
Ck
A Curses Based Toolkit For Tcl

Christian Werner (Christian.Werner@t-online.de)

This manual is for Ck version 8.0

cwsh(1) CkApplications cwsh(1)

NAME
cwsh − Simple curses windowing shell

SYNOPSIS
cwsh?fileName arg arg ...?

DESCRIPTION
Cwsh is a simple program consisting of the Tcl command language, the Ck toolkit, and a main program
that eventually reads commands from a file.It creates a main window and then processes Tcl commands.
If cwsh is invoked with no arguments, then it reads Tcl commands interactively from a command window.
It will continue processing commands until all windows have been deleted or until theexit Tcl command is
evaluated. If there exists a file.cwshrc in the home directory of the user, cwsh evaluates the file as a Tcl
script just before presenting the command window.

If cwsh is invoked with an initial fileNameargument, thenfileNameis treated as the name of a script file.
Cwsh will evaluate the script infileName(which presumably creates a user interface), then it will respond
to events until all windows have been deleted. The command window will not be created.There is no auto-
matic evaluation of.cwshrc in this case, but the script file can always source it if desired.

APPLICATION NAME AND CLASS
The name of the application, which is used for processing the option data base is taken fromfileName, if i t
is specified, or from the command name by whichcwshwas inv oked. If this name contains a ‘‘/’ ’ charac-
ter, then only the characters after the last slash are used as the application name.

The class of the application, which is used for purposes such as specifying options, is the same as its name
except that the first letter is capitalized.

VARIABLES
Cwshsets the following Tcl variables:

argc Contains a count of the number ofarg arguments (0 if none).

argv Contains a Tcl list whose elements are thearg arguments that follow fileName, in order,
or an empty string if there are no such arguments.

argv0 ContainsfileNameif it was specified.Otherwise, contains the name by whichcwshwas
invoked.

tcl_interactive Contains 1 ifcwshwas started withoutfileNameargument, 0 otherwise.

SCRIPT FILES
If you create a Tcl script in a file whose first line is

#!/usr/local/bin/cwsh

then you can invoke the script file directly from your shell if you mark it as executable. Thisassumes that
cwshhas been installed in the default location in /usr/local/bin;if it’ s installed somewhere else then you’ll
have to modify the above line to match.Many UNIX systems do not allow the#! line to exceed about 30
characters in length, so be sure that thecwshexecutable can be accessed with a short file name.

An even better approach is to start your script files with the following three lines:

#!/bin/sh
the next line restarts using cwsh \
exec cwsh "$0" "$@"

Ck 8.0 1

cwsh(1) CkApplications cwsh(1)

This approach has three advantages over the approach in the previous paragraph.First, the location of the
cwsh binary doesn’t hav eto be hard-wired into the script:it can be anywhere in your shell search path.
Second, it gets around the 30-character file name limit in the previous approach.Third, this approach will
work even if cwsh is itself a shell script (this is done on some systems in order to handle multiple architec-
tures or operating systems:the cwsh script selects one of several binaries to run).The three lines cause
bothsh andcwsh to process the script, but theexecis only executed bysh. sh processes the script first;it
treats the second line as a comment and executes the third line.Theexecstatement cause the shell to stop
processing and instead to start upcwsh to reprocess the entire script.When cwsh starts up, it treats all
three lines as comments, since the backslash at the end of the second line causes the third line to be treated
as part of the comment on the second line.

KEYW ORDS
shell, toolkit

2 8.0 Ck

after(n) CkBuilt-In Commands after(n)

NAME
after − Execute a command after a time delay

SYNOPSIS
after ms
after ms?script script script ...?
after cancelid
after cancelscript script script ...
after idle ?script script script ...?

DESCRIPTION
This command is used to delay execution of the program or to execute a command in background after a
delay. It has several forms, depending on the first argument to the command:

after ms
Ms must be an integer giving a time in milliseconds.The command sleeps forms milliseconds
and then returns.While the command is sleeping the application does not respond to keypresses
or any other events.

after ms?script script script ...?
In this form the command returns immediately, but it arranges for a Tcl command to be executed
msmilliseconds later as a background event handler. The delayed command is formed by concate-
nating all thescript arguments in the same fashion as theconcatcommand. Thecommand will be
executed at global level (outside the context of any Tcl procedure). If an error occurs while
executing the delayed command then thetkerror mechanism is used to report the error. Theafter
command returns an identifier that can be used to cancel the delayed command usingafter cancel.

after cancelid
Cancels the execution of a delayed command that was previously scheduled.Id indicates which
command should be canceled;it must have been the return value from a previousafter command.
If the command given by id has already been executed then theafter cancel command has no
effect.

after cancelscript script ...
This command also cancels the execution of a delayed command.The script arguments are con-
catenated together with space separators (just as in theconcat command). Ifthere is a pending
command that matches the string, it is cancelled and will never be executed; ifno such command
is currently pending then theafter cancelcommand has no effect.

after idle script?script script ...?
Concatenates thescript arguments together with space separators (just as in theconcatcommand),
and arranges for the resulting script to be evaluated later as an idle handler (the script runs the next
time the Tk event loop is entered and there are no events to process).The command returns an
identifier that can be used to cancel the delayed command usingafter cancel. If an error occurs
while executing the script then thetkerror mechanism is used to report the error.

SEE ALSO
tkerror

KEYW ORDS
cancel, delay, sleep, time

Ck 8.0 3

bell(n) CkBuilt-In Commands bell(n)

NAME
bell − Ring a terminal’s bell

SYNOPSIS
bell

DESCRIPTION
This command rings the bell on the terminal if supported, otherwise the terminal’s screen is flashed. An
empty string is returned as result of this command.Bell is carried out immediately, i.e. not deferred until
the application becomes idle.

KEYW ORDS
beep, bell, ring

4 8.0 Ck

bind(n) CkBuilt-In Commands bind(n)

NAME
bind − Arrange for events to invoke Tcl scripts

SYNOPSIS
bind tag
bind tag sequence
bind tag sequence script
bind tag sequence+script

INTRODUCTION
The bind command associates Tcl scripts with events. If all three arguments are specified,bind will
arrange forscript (a Tcl script) to be evaluated whenever the event(s) given by sequenceoccur in the win-
dow(s) identified bytag. If script is prefixed with a ‘‘+’ ’, then it is appended to any existing binding for
sequence; otherwisescript replaces any existing binding. If script is an empty string then the current bind-
ing for sequenceis destroyed, leaving sequenceunbound. Inall of the cases where ascript argument is
provided,bind returns an empty string.

If sequenceis specified without ascript, then the script currently bound tosequenceis returned, or an
empty string is returned if there is no binding forsequence. If neithersequencenor script is specified, then
the return value is a list whose elements are all the sequences for which there exist bindings fortag.

The tag argument determines which window(s) the binding applies to.If tag begins with a dot, as in.a.b.c,
then it must be the path name for a window; otherwise it may be an arbitrary string.Each window has an
associated list of tags, and a binding applies to a particular window if i ts tag is among those specified for
the window. Although thebindtags command may be used to assign an arbitrary set of binding tags to a
window, the default binding tags provide the following behavior:

If a tag is the name of an internal window the binding applies to that window.

If the tag is the name of a toplevel window the binding applies to the toplevel window and all its
internal windows.

If the tag is the name of a class of widgets, such asButton, the binding applies to all widgets in
that class;

If tag has the valueall, the binding applies to all windows in the application.

EVENT PATTERNS
The sequenceargument specifies a sequence of one or more event patterns, with optional white space
between the patterns.Each event pattern may take either of two forms. Inthe simplest case it is a single
printing ASCII character, such asa or [. The character may not be a space character or the character<.
This form of pattern matches aKeyPressev ent for the particular character. The second form of pattern is
longer but more general.It has the following syntax:

<type-detail>

The entire event pattern is surrounded by angle brackets. Insidethe angle brackets are an event type, and an
extra piece of information (detail) identifying a particular button or keysym. Any of the fields may be omit-
ted, as long as at least one oftypeanddetail is present.The fields must be separated by white space or
dashes.

EVENT TYPES
Thetypefield may be any of the following list. Where two names appear together, they are synonyms.

Ck 8.0 5

bind(n) CkBuilt-In Commands bind(n)

BarCode Expose Map
ButtonPress, Button FocusIn Unmap
ButtonRelease FocusOut
Destroy KeyPress, Key, Control

The last part of a long event specification isdetail. In the case of aButtonPressor ButtonReleaseev ent, it
is the number of a button (1-5). If a button number is given, then only an event on that particular button
will match; if no button number is given, then an event on any button will match. Note: giving a specific
button number is different than specifying a button modifier; in the first case, it refers to a button being
pressed or released, while in the second it refers to some other button that is already depressed when the
matching event occurs. If a button number is given then typemay be omitted:if will default to Button-
Press. For example, the specifier<1> is equivalent to<ButtonPress-1>.

If the event type isKeyPress, Key or Control, then detail may be specified in the form of a keysym.
Ke ysyms are textual specifications for particular keys on the keyboard; they include all the alphanumeric
ASCII characters (e.g. ‘‘a’’ i s the keysym for the ASCII character ‘‘a’’), plus descriptions for non-alphanu-
meric characters (‘‘comma’’ i s the keysym for the comma character), plus descriptions for some of the non-
ASCII keys on the keyboard (e.g. ‘‘F1’’ i s the keysym for the F1 function key, if i t exists). Thecomplete
list of keysyms is not presented here;it is available by invoking thecurses haskey Tcl command and may
vary from system to system.If necessary, you can use the%K notation described below to print out the
keysym name for a particular key. If a keysym detail is given, then thetypefield may be omitted;it will
default toKeyPress. For example,<KeyPress-comma>is equivalent to<comma>.

BINDING SCRIPTS AND SUBSTITUTIONS
The script argument tobind is a Tcl script, which will be executed whenever the given event sequence
occurs. Commandwill be executed in the same interpreter that thebind command was executed in, and it
will run at global level (only global variables will be accessible).If script contains any % characters, then
the script will not be executed directly. Instead, a new script will be generated by replacing each% , and
the character following it, with information from the current event. Thereplacement depends on the char-
acter following the% , as defined in the list below. Unless otherwise indicated, the replacement string is the
decimal value of the given field from the current event. Someof the substitutions are only valid for certain
types of events; if they are used for other types of events the value substituted is undefined.

%% Replaced with a single percent.

%b The number of the button that was pressed or released.Valid only for ButtonPressandButton-
Releaseev ents.

%k Thekeycodefield from the event. Valid only forKeyPressandKeyReleaseev ents.

%x Thex coordinate (window coordinate system) fromButtonPressandButtonReleaseev ents.

%y They coordinate (window coordinate system) fromButtonPressandButtonReleaseev ents.

%A For KeyPressev ents, substitutes the ASCII character corresponding to the event, or the empty
string if the event doesn’t correspond to an ASCII character (e.g. the shift key was pressed).For
BarCodeev ents, substitutes the entire barcode data packet.

%K The keysym corresponding to the event, substituted as a textual string. Valid only for KeyPress
ev ents.

%N The keysym corresponding to the event, substituted as a decimal number. Valid only forKeyPress
ev ents.

%W The path name of the window to which the event was reported (thewindowfield from the event).
Valid for all event types.

6 8.0 Ck

bind(n) CkBuilt-In Commands bind(n)

%X Thex coordinate (screen coordinate system) fromButtonPressandButtonReleaseev ents.

%Y They coordinate (screen coordinate system) fromButtonPressandButtonReleaseev ents.

The replacement string for a %-replacement is formatted as a proper Tcl list element.This means that it
will be surrounded with braces if it contains spaces, or special characters such as$ and{ may be preceded
by backslashes.This guarantees that the string will be passed through the Tcl parser when the binding
script is evaluated. Mostreplacements are numbers or well-defined strings such ascomma; for these
replacements no special formatting is ever necessary. The most common case where reformatting occurs is
for the%A substitution. For example, ifscript is

insert %A

and the character typed is an open square bracket, then the script actually executed will be

insert \[

This will cause theinsert to receive the original replacement string (open square bracket) as its first argu-
ment. Ifthe extra backslash hadn’t been added, Tcl would not have been able to parse the script correctly.

MULTIPLE MA TCHES
It is possible for several bindings to match a given event. If the bindings are associated with differenttag’s,
then each of the bindings will be executed, in order. By default, a class binding will be executed first, fol-
lowed by a binding for the widget, a binding for its toplevel, and anall binding. Thebindtags command
may be used to change this order for a particular window or to associate additional binding tags with the
window.

Thecontinue andbreak commands may be used inside a binding script to control the processing of match-
ing scripts. If continue is invoked, then the current binding script is terminated but Tk will continue pro-
cessing binding scripts associated with othertag’s. If the break command is invoked within a binding
script, then that script terminates and no other scripts will be invoked for the event.

If more than one binding matches a particular event and they hav e the sametag, then the most specific
binding is chosen and its script is evaluated. Thefollowing tests are applied, in order, to determine which
of several matching sequences is more specific: (a) a longer sequence (in terms of number of events
matched) is more specific than a shorter sequence; (b) an event pattern that specifies a specific button or key
is more specific than one that doesn’t.

If an event does not match any of the existing bindings, then the event is ignored.An unbound event is not
considered to be an error.

ERRORS
If an error occurs in executing the script for a binding then thetkerror mechanism is used to report the
error. Thetkerror command will be executed at global level (outside the context of any Tcl procedure).

SEE ALSO
tkerror

KEYW ORDS
ev ent, binding

Ck 8.0 7

bindtags(n) CkBuilt-In Commands bindtags(n)

NAME
bindtags − Determine which bindings apply to a window, and order of evaluation

SYNOPSIS
bindtagswindow?tagList?

DESCRIPTION
When a binding is created with thebind command, it is associated either with a particular window such as
.a.b.c, a class name such asButton, the keyword all, or any other string.All of these forms are calledbind-
ing tags. Each window contains a list of binding tags that determine how events are processed for the win-
dow. When an event occurs in a window, it is applied to each of the window’s tags in order:for each tag,
the most specific binding that matches the given tag and event is executed. Seethe bind command for
more information on the matching process.

By default, each window has four binding tags consisting of the name of the window, the window’s class
name, the name of the window’s nearest toplevel ancestor, and all, in that order. Toplevel windows have
only three tags by default, since the toplevel name is the same as that of the window. The bindtags com-
mand allows the binding tags for a window to be read and modified.

If bindtags is invoked with only one argument, then the current set of binding tags forwindow is returned
as a list. If the tagList argument is specified tobindtags, then it must be a proper list; the tags forwindow
are changed to the elements of the list.The elements oftagList may be arbitrary strings;however, any tag
starting with a dot is treated as the name of a window; if no window by that name exists at the time an
ev ent is processed, then the tag is ignored for that event. Theorder of the elements intagList determines
the order in which binding scripts are executed in response to events. For example, the command

bindtags .b {all . Button .b}

reverses the order in which binding scripts will be evaluated for a button named.b so thatall bindings are
invoked first, following by bindings for.b’s toplevel (‘‘ .’’), followed by class bindings, followed by bind-
ings for.b.

The bindtags command may be used to introduce arbitrary additional binding tags for a window, or to
remove standard tags.For example, the command

bindtags .b {.b Trick yButton . all}

replaces theButton tag for.b with Tr ickyButton. This means that the default widget bindings for buttons,
which are associated with theButton tag, will no longer apply to.b, but any bindings associated with
Tr ickyButton (perhaps some new button behavior) will apply.

SEE ALSO
bind

KEYW ORDS
binding, event, tag

8 8.0 Ck

button(n) CkBuilt-In Commands button(n)

NAME
button − Create and manipulate button widgets

SYNOPSIS
button pathName?options?

STANDARD OPTIONS
activeAttrib utes attributes disabledForeground textVariable
activeBackground background foreground underline
activeForeground disabledAttributes takeFocus underlineAttributes
anchor disabledBackground text underlineForeground

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: −command

Specifies a Tcl command to associate with the button. Thiscommand is typically invoked when
mouse button 1 is pressed over the button window.

Name: height
Class: Height
Command-Line Switch: −height

Specifies a desired height for the button in screen lines.If this option isn’t specified, the button’s
desired height is 1 line.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of three states for the button: normal, active, or disabled. In normal state the but-
ton is displayed using theforeground andbackground options. Theactive state is typically used
when the input focus is in the button. Inactive state the button is displayed using theactiveAt-
trib utes, activeForeground andactiveBackground options. Disabledstate means that the button
should be insensitive: the default bindings will refuse to activate the widget and will ignore mouse
button presses. In this state thedisabledAttrib utes, disabledForeground and disabledBack-
ground options determine how the button is displayed.

Name: width
Class: Width
Command-Line Switch: −width

Specifies a desired width for the button in screen columns.If this option isn’t specified, the but-
ton’s desired width is computed from the size of the text being displayed in it.

DESCRIPTION
Thebutton command creates a new window (given by thepathNameargument) and makes it into a button
widget. Additionaloptions, described above, may be specified on the command line or in the option
database to configure aspects of the button such as its colors, attributes, and text. The button command
returns itspathNameargument. Atthe time this command is invoked, there must not exist a window
namedpathName, but pathName’s parent must exist.

A button is a widget that displays a textual string, bitmap or image.One of the characters may optionally
be underlined using theunderline, underlineAttrib utes, and underlineForeground options. It can display
itself in either of three different ways, according to thestateoption. Whena user invokes the button (e.g.

Ck 8.0 9

button(n) CkBuilt-In Commands button(n)

by pressing mouse button 1 with the cursor over the button), then the Tcl command specified in the−com-
mand option is invoked.

WIDGET COMMAND
Thebutton command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for button widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thebutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thebutton command.

pathNameinvoke
Invoke the Tcl command associated with the button, if there is one.The return value is the return
value from the Tcl command, or an empty string if there is no command associated with the but-
ton. Thiscommand is ignored if the button’s state isdisabled.

DEFAULT B INDINGS
Ck automatically creates class bindings for buttons that give them the following default behavior:

[1] A button activates whenever it gets the input focus and deactivates whenever it loses the input
focus.

[2] If mouse button 1 is pressed over a button, the button is invoked.

[3] Whena button has the input focus, the space or return key cause the button to be invoked.

If the button’s state isdisabled then none of the above actions occur:the button is completely non-respon-
sive.

The behavior of buttons can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYW ORDS
button, widget

10 8.0 Ck

checkbutton(n) CkBuilt-In Commands checkbutton(n)

NAME
checkbutton − Create and manipulate checkbutton widgets

SYNOPSIS
checkbutton pathName?options?

STANDARD OPTIONS
activeAttrib utes attributes disabledForeground textVariable
activeBackground background foreground underline
activeForeground disabledAttributes takeFocus underlineAttributes
anchor disabledBackground text underlineForeground

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: −command

Specifies a Tcl command to associate with the button. Thiscommand is typically invoked when
mouse button 1 is pressed on the button window. The button’s global variable (−variable option)
will be updated before the command is invoked.

Name: height
Class: Height
Command-Line Switch: −height

Specifies a desired height for the button in screen lines.If this option isn’t specified, the button’s
desired height is 1 line.

Name: offValue
Class: Value
Command-Line Switch: −offvalue

Specifies value to store in the button’s associated variable whenever this button is deselected.
Defaults to ‘‘0’ ’.

Name: onValue
Class: Value
Command-Line Switch: −onvalue

Specifies value to store in the button’s associated variable whenever this button is selected.
Defaults to ‘‘1’ ’.

Name: selectColor
Class: Background
Command-Line Switch: −selectcolor

Specifies a background color to use when the button is selected.If indicatorOn is true then the
color applicies to the indicator.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of three states for the checkbutton: normal, active, or disabled. In normal state the
checkbutton is displayed using theattrib utes, foreground andbackground options. Theactive
state is used when the input focus is in the checkbutton. In active state the checkbutton is dis-
played using theactiveAttrib utes, activeForeground, and activeBackground options. Disabled
state means that the checkbutton should be insensitive: the default bindings will refuse to activate
the widget and will ignore mouse button presses.In this state thedisabledAttrib utes, disabled-
Foreground, anddisabledBackground options determine how the checkbutton is displayed.

Ck 8.0 11

checkbutton(n) CkBuilt-In Commands checkbutton(n)

Name: variable
Class: Variable
Command-Line Switch: −variable

Specifies name of global variable to set to indicate whether or not this button is selected.Defaults
to the name of the button within its parent (i.e. the last element of the button window’s path name).

Name: width
Class: Width
Command-Line Switch: −width

Specifies a desired width for the button in screen columns.If this option isn’t specified, the but-
ton’s desired width is computed from the size of the text being displayed in it.

DESCRIPTION
Thecheckbutton command creates a new window (given by thepathNameargument) and makes it into a
checkbutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the checkbutton such as its colors, font, text, and initial relief. The
checkbutton command returns itspathNameargument. Atthe time this command is invoked, there must
not exist a window namedpathName, but pathName’s parent must exist.

A checkbutton is a widget that displays a textual string and a square called anindicator. One of the charac-
ters of the string may optionally be underlined using theunderline, underlineAttrib utes, and underline-
Foreground options. A checkbutton has all of the behavior of a simple button, including the following: it
can display itself in either of three different ways, according to thestateoption, and it invokes a Tcl com-
mand whenever mouse button 1 is clicked over the checkbutton.

In addition, checkbuttons can beselected. If a checkbutton is selected then the indicator is drawn with a
special color, and a Tcl variable associated with the checkbutton is set to a particular value (normally 1).If
the checkbutton is not selected, then the indicator is drawn with no special color, and the associated variable
is set to a different value (typically 0).By default, the name of the variable associated with a checkbutton is
the same as thenameused to create the checkbutton. Thevariable name, and the ‘‘on’’ and ‘‘off’ ’ values
stored in it, may be modified with options on the command line or in the option database. By default a
checkbutton is configured to select and deselect itself on alternate button clicks. In addition, each check-
button monitors its associated variable and automatically selects and deselects itself when the variables
value changes to and from the button’s ‘‘on’’ value.

WIDGET COMMAND
Thecheckbutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for checkbutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thecheckbutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs

12 8.0 Ck

checkbutton(n) CkBuilt-In Commands checkbutton(n)

are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thecheckbutton command.

pathNamedeselect
Deselects the checkbutton and sets the associated variable to its ‘‘off’ ’ value.

pathNameinvoke
Does just what would have happened if the user invoked the checkbutton with the mouse: toggle
the selection state of the button and invoke the Tcl command associated with the checkbutton, if
there is one.The return value is the return value from the Tcl command, or an empty string if
there is no command associated with the checkbutton. Thiscommand is ignored if the checkbut-
ton’s state isdisabled.

pathNameselect
Selects the checkbutton and sets the associated variable to its ‘‘on’’ value.

pathNametoggle
Toggles the selection state of the button, redisplaying it and modifying its associated variable to
reflect the new state.

BINDINGS
Ck automatically creates class bindings for checkbuttons that give them the following default behavior:

[1] A checkbutton activates whenever it gets the input focus and deactivates whenever it loses the
input focus.

[2] When mouse button 1 is pressed over a checkbutton it is invoked (its selection state toggles and
the command associated with the button is invoked, if there is one).

[3] When a checkbutton has the input focus, the space or return keys cause the checkbutton to be
invoked.

If the checkbutton’s state isdisabled then none of the above actions occur:the checkbutton is completely
non-responsive.

The behavior of checkbuttons can be changed by defining new bindings for individual widgets or by
redefining the class bindings.

KEYW ORDS
checkbutton, widget

Ck 8.0 13

ck_dialog(n) CkBuilt-In Commands ck_dialog(n)

NAME
ck_dialog − Create dialog and wait for response

SYNOPSIS
ck_dialogwindow title text string string ...

DESCRIPTION
This procedure is part of the Ck script library. Its arguments describe a dialog box:

window
Name of top-level window to use for dialog.Any existing window by this name is destroyed.

title Te xt to appear in the window’s top line as title for the dialog.

text Message to appear in the top portion of the dialog box.

string There will be one button for each of these arguments. Eachstring specifies text to display in a but-
ton, in order from left to right.

After creating a dialog box,ck_dialog waits for the user to select one of the buttons either by clicking on
the button with the mouse or by typing return or space to invoke the focus button (if any). Thenit returns
the index of the selected button: 0for the leftmost button, 1 for the button next to it, and so on.

KEYW ORDS
bitmap, dialog

14 8.0 Ck

ck_focusNext(n) CkBuilt-In Commands ck_focusNext(n)

NAME
ck_focusNext, ck_focusPrev − Utility procedures for managing the input focus.

SYNOPSIS
ck_focusNextwindow
ck_focusPrevwindow

DESCRIPTION
ck_focusNextis a utility procedure used for keyboard traversal. Itreturns the ‘‘next’’ w indow after window
in focus order. The focus order is determined by the stacking order of windows and the structure of the
window hierarchy. Among siblings, the focus order is the same as the stacking order, with the lowest win-
dow being first. If a window has children, the window is visited first, followed by its children (recursively),
followed by its next sibling. Top-level windows other thanwindow are skipped, so thatck_focusNext
never returns a window in a different top-level f romwindow.

After computing the next window, ck_focusNextexamines the window’s −takefocusoption to see whether
it should be skipped.If so, ck_focusNextcontinues on to the next window in the focus order, until it even-
tually finds a window that will accept the focus or returns back towindow.

ck_focusPrev is similar tock_focusNextexcept that it returns the window just beforewindowin the focus
order.

KEYW ORDS
focus, keyboard traversal, toplevel

Ck 8.0 15

curses(n) CkBuilt-In Commands curses(n)

NAME
curses − Retrieve/modify curses based information

SYNOPSIS
cursesoption?arg arg ...?

DESCRIPTION
Thecursescommand is used to retrieve or modify information which is related to thecurses(3)library pro-
viding the input/output mechanisms used by Ck.It can take any of a number of different forms, depending
on theoptionargument. Thelegal forms are:

curses barcodestartChar endChar ?timeout?
Enables or modifies barcode reader support with delivery of BarCode ev ents.StartCharandend-
Char are the start and end characters which delimit the barcode data packet without being deliv-
ered to the application. They must be specified as decimal numbers.The optionaltimeoutargu-
ment is the maximum time between reception of start and end characters in millisecond for receiv-
ing the data packet; the default value is 1000.

curses barcode?off?
If off is present, barcode reader support is disabled. Otherwise, the current start/end characters and
the timeout are returned as a list of three decimal numbers.

curses baudrate
Returns the baud rate of the terminal as decimal string.

curses encoding?ISO8859|IBM437?
Sets or returns the character encoding being or to be used for displaying text. This affects for
example the output of the text widget for the character values 0x80..0x9f.

curses gchar?charName? ?value?
Sets or returns the mappings of ‘‘A lternate Character Set’’ characters used to display the arrows of
scrollbars, the indicators for checkbuttons and radiobuttons etc.CharNamemust be a valid name
of an ACS character (see list below), andvaluemust be an integer, i.e. thevalue of thecurses(3)
character which shall be output for the ACS character. By default theterminf o(5) entry for the ter-
minal provides these mappings and there’s rarely a need to modify them.

Ck name description
ulcorner upperleft corner
urcorner upperright corner
llcorner lower left corner
lrcorner lower right corner
rtee teepointing right
ltee teepointing left
btee teepointing up
ttee teepointing down
hline horizontalline
vline vertical line
plus large plus or crossover
s1 scanline #1
s9 scanline #9
diamond diamond
ckboard checker board (stipple)
degree degree symbol
plminus plus/minus
bullet bullet

16 8.0 Ck

curses(n) CkBuilt-In Commands curses(n)

larrow arrow pointing left
rarrow arrow pointing right
uarrow arrow pointing up
darrow arrow pointing down
board boardof squares
lantern lanternsymbol
block solidsquare block

curses haskey?keyName?
If keyNameis omitted this command returns a list of all valid symbolic names of keyboard keys.
If keyNameis given, a boolean is returned indicating if the terminal can generate that key.

curses purgeinput
Removes all characters typed so far from the keyboard input queue. This command should be used
with great caution, sincexterm(1) mouse events and barcode events are reported through the
keyboard input queue as a character stream which can be interrupted by this command.

curses refreshdelay?milliseconds?
Sets or returns a time value which is used to limit the number ofcurses(3)screen updates. By
default the delay is zero, which does not impose any limits. Setting the refresh delay to a positive
number can be useful in environments where the terminal is connected via terminal servers or
rlogin(1) sessions.

curses rev ersekludge?boolean?
Queries or modifies special code for treatment of the reverse video attribute in conjunction with
colors. On some terminals (e.g. the infamous AT386 Interactive console), the reverse attribute
overrides the colors in effect. If the special code is enabled, the reverse attribute is emulated by
swapping the foreground and background colors.

curses screendumpfileName
Dumps the current screen contents to the filefileName if the curses library supports the
scr_dmp(3) function. Otherwise an error is reported. The screen dump file is per se not useful,
since it contains some binary representation internal to curses. However, there may exist an exter-
nal utility program which transforms the screen dump file to ASCII in order to print it on paper.

curses suspend
Takes appropriate actions for job control, such as saving curses(3)terminal state, sending the stop
signal to the process and restoring the terminal state when the process is continued.

SEE ALSO
curses(3)

KEYW ORDS
screen, terminal, curses

Ck 8.0 17

destroy(n) CkBuilt-In Commands destroy(n)

NAME
destroy − Destroy one or more windows

SYNOPSIS
destroy ?window window ...?

DESCRIPTION
This command deletes the windows given by thewindowarguments, plus all of their descendants.If a win-
dow ‘‘ .’’ i s deleted then the entire application will be destroyed and the actions of theexit command are
taken. Thewindows are destroyed in order, and if an error occurs in destroying a window the command
aborts without destroying the remaining windows.

KEYW ORDS
application, destroy, window

18 8.0 Ck

entry(n) CkBuilt-In Commands entry(n)

NAME
entry − Create and manipulate entry widgets

SYNOPSIS
entry pathName?options?

STANDARD OPTIONS
attrib utes justify selectForeground xScrollCommand
background selectAttributes takeFocus
foreground selectBackground textVariable

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: show
Class: Show
Command-Line Switch: −show

If this option is specified, then the true contents of the entry are not displayed in the window.
Instead, each character in the entry’s value will be displayed as the first character in the value of
this option, such as ‘‘*’ ’. This is useful, for example, if the entry is to be used to enter a password.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of two states for the entry:normal or disabled. If the entry is disabled then the
value may not be changed using widget commands and no insertion cursor will be displayed, even
if the input focus is in the widget.

Name: width
Class: Width
Command-Line Switch: −width

Specifies an integer value indicating the desired width of the entry window, in screen columns. If
the value is less than or equal to zero, the widget picks a size just large enough to hold its current
text. The default width is 16.

DESCRIPTION
The entry command creates a new window (given by the pathNameargument) and makes it into an entry
widget. Additionaloptions, described above, may be specified on the command line or in the option
database to configure aspects of the entry such as its colors and attributes. Theentry command returns its
pathNameargument. Atthe time this command is invoked, there must not exist a window namedpath-
Name, but pathName’s parent must exist.

An entry is a widget that displays a one-line text string and allows that string to be edited using widget
commands described below, which are typically bound to keystrokes and mouse actions.When first cre-
ated, an entry’s string is empty. A portion of the entry may be selected as described below. Entries also
observe the standard Ck rules for dealing with the input focus.When an entry has the input focus it dis-
plays aninsertion cursor to indicate where new characters will be inserted.

Entries are capable of displaying strings that are too long to fit entirely within the widget’s window. In this
case, only a portion of the string will be displayed;commands described below may be used to change the
view in the window. Entries use the standardxScrollCommand mechanism for interacting with scrollbars
(see the description of thexScrollCommand option for details).

Ck 8.0 19

entry(n) CkBuilt-In Commands entry(n)

WIDGET COMMAND
Theentry command creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for entries take one or more indices as arguments. Anindex specifies a par-
ticular character in the entry’s string, in any of the following ways:

number Specifies the character as a numerical index, where 0 corresponds to the first character in the
string.

anchor Indicates the anchor point for the selection, which is set with theselect from and select
adjust widget commands.

end Indicates the character just after the last one in the entry’s string. Thisis equivalent to speci-
fying a numerical index equal to the length of the entry’s string.

insert Indicates the character adjacent to and immediately following the insertion cursor.

sel.first Indicates the first character in the selection.It is an error to use this form if the selection
isn’t in the entry window.

sel.last Indicates the character just after the last one in the selection.It is an error to use this form if
the selection isn’t in the entry window.

@number In this form,numberis treated as an x-coordinate in the entry’s window; thecharacter span-
ning that x-coordinate is used.For example, ‘‘@0’’ i ndicates the left-most character in the
window.

Abbreviations may be used for any of the forms above, e.g. ‘‘e’’ o r ‘‘sel.f’’ . In general, out-of-range indices
are automatically rounded to the nearest legal value.

The following commands are possible for entry widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by theentry command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
theentry command.

pathNamedeletefirst ?last?
Delete one or more elements of the entry. First is the index of the first character to delete, andlast
is the index of the character just after the last one to delete.If last isn’t specified it defaults to
first+1, i.e. a single character is deleted.This command returns an empty string.

pathNameget
Returns the entry’s string.

pathNameicursor index
Arrange for the insertion cursor to be displayed just before the character given by index. Returns
an empty string.

20 8.0 Ck

entry(n) CkBuilt-In Commands entry(n)

pathNameindex index
Returns the numerical index corresponding toindex.

pathNameinsert index string
Insert the characters ofstring just before the character indicated byindex. Returns an empty
string.

pathNameselectionoption arg
This command is used to adjust the selection within an entry. It has several forms, depending on
option:

pathNameselection adjustindex
Locate the end of the selection nearest to the character given by index, and adjust that end
of the selection to be atindex (i.e including but not going beyond index). Theother end
of the selection is made the anchor point for futureselect tocommands. Ifthe selection
isn’t currently in the entry, then a new selection is created to include the characters
betweenindex and the most recent selection anchor point, inclusive. Returns an empty
string.

pathNameselection clear
Clear the selection if it is currently in this widget.If the selection isn’t in this widget then
the command has no effect. Returnsan empty string.

pathNameselection from index
Set the selection anchor point to just before the character given by index. Doesn’t change
the selection.Returns an empty string.

pathNameselection present
Returns 1 if there is are characters selected in the entry, 0 if nothing is selected.

pathNameselection rangestart end
Sets the selection to include the characters starting with the one indexed by start and end-
ing with the one just beforeend. If endrefers to the same character asstart or an earlier
one, then the entry’s selection is cleared.

pathNameselection toindex
If index is before the anchor point, set the selection to the characters fromindex up to but
not including the anchor point.If index is the same as the anchor point, do nothing.If
index is after the anchor point, set the selection to the characters from the anchor point up
to but not includingindex. The anchor point is determined by the most recentselect
fr om or select adjustcommand in this widget.If the selection isn’t in this widget then a
new selection is created using the most recent anchor point specified for the widget.
Returns an empty string.

pathNamexview args
This command is used to query and change the horizontal position of the text in the widget’s win-
dow. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Eachelement is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the entry’s text is off -screen to
the left, the middle 40% is visible in the window, and 40% of the text is off-screen to the
right. Theseare the same values passed to scrollbars via the−xscrollcommandoption.

pathNamexview index
Adjusts the view in the window so that the character given by index is displayed at the
left edge of the window.

Ck 8.0 21

entry(n) CkBuilt-In Commands entry(n)

pathNamexview moveto fraction
Adjusts the view in the window so that the characterfractionof the way through the text
appears at the left edge of the window. Fr actionmust be a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer. Whatmust be eitherunits or pagesor an abbreviation of one
of these.If what is units, the view adjusts left or right bynumberav erage-width charac-
ters on the display;if it is pagesthen the view adjusts bynumberscreenfuls. Ifnumber
is negative then characters farther to the left become visible;if it is positive then charac-
ters farther to the right become visible.

DEFAULT B INDINGS
Ck automatically creates class bindings for entries that give them the following default behavior.

[1] Clicking mouse button 1 positions the insertion cursor just before the character underneath the
mouse cursor, sets the input focus to this widget, and clears any selection in the widget.

[2] If any normal printing characters are typed in an entry, they are inserted at the point of the inser-
tion cursor.

[3] TheLeft and Right keys move the insertion cursor one character to the left or right;they also clear
any selection in the entry and set the selection anchor. Control-b and Control-f behave the same as
Left and Right, respectively.

[4] TheHome key, or Control-a, will move the insertion cursor to the beginning of the entry and clear
any selection in the entry.

[5] The End key, or Control-e, will move the insertion cursor to the end of the entry and clear any
selection in the entry.

[6] TheSelect key sets the selection anchor to the position of the insertion cursor. It doesn’t affect the
current selection.

[7] The Delete key deletes the selection, if there is one in the entry. If there is no selection, it deletes
the character to the right of the insertion cursor.

[8] The BackSpace key and Control-h delete the selection, if there is one in the entry. If there is no
selection, it deletes the character to the left of the insertion cursor.

[9] Control-ddeletes the character to the right of the insertion cursor.

[10] Control-kdeletes all the characters to the right of the insertion cursor.

[11] Control-treverses the order of the two characters to the right of the insertion cursor.

If the entry is disabled using the−state option, then the entry’s view can still be adjusted and text in the
entry can still be selected, but no insertion cursor will be displayed and no text modifications will take
place.

The behavior of entries can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYW ORDS
entry, widget

22 8.0 Ck

entryx(n) CkBuilt-In Commands entryx(n)

NAME
entryx − Create extended entry widgets

SYNOPSIS
entryx pathName ?options?

DESCRIPTION
This procedure is part of the Ck script library. It is a slightly extended version of the Tclentry command
which provides the following additional command line options:

−default value
Default value for integer, unsigned, and float modes, which is stored in entry widget on Focu-
sOut, if the value in the widget is not a legal number. Defaults to an empty string.

−fieldwidth number
Limits the string in the entry widget to at mostnumbercharacters. Defaults to some ten thousand
characters.

−initial value
Initial value for the entry’s string. If this option is omitted, no initial value is set.

−modemodeName
Determines the additional bindings for input checking which will be bound to the entry widget.
ModeNamemust be one ofinteger (for integer numbers including optional sign),unsigned (for
integer numbers without sign),float (for floating point numbers including optional sign and frac-
tional part, but without exponent part),normal (for entries without input checking at all),regexp
(for checking the entry’s string against a regular expression), andboolean(for boolean values, e.g.
0 or 1, Y or N and so on).If the −modeoption is omitted,normal is chosen as default.

−offvaluechar
For modebooleanentry widgets only:char is used for the ‘‘f alse’’ state of the entry. Char defaults
to ‘‘0’ ’. It is always converted to upper case.

−onvalue char
For modebooleanentry widgets only:char is used for the ‘‘true’’ state of the entry. Char defaults
to ‘‘1’ ’. It is always converted to upper case.

−regexpregExp
For all modes this is the regular expression which provides input filtering.This option is ignored
for booleanmode.

−touchvariable varName
The global variablevarNameis set to 1 whenever the user changes the entry’s string. The user may
reset this variable to 0 at any time.

These options must be given at creation time of the entry. They cannot be modified later using theconfig-
urewidget command.

After creating the entry widget,entryx binds procedures to do input checking using thebindtags mecha-
nism to the entry widget.These procedures provide for overtype rather than insert mode and give the fol-
lowing behaviour:

[1] If mouse button 1 is pressed on the entry and the entry accepts the input focus, the input focus is
set on the entry and the entry’s insertion cursor is placed on the very first character.

[2] The Left and Right keys move the insertion cursor one character to the left or right. Inboolean
mode these keys are used for keyboard traversal, i.e. the Left key moves the focus to the previous
widget in focus order, the Right key to the next widget.

Ck 8.0 23

entryx(n) CkBuilt-In Commands entryx(n)

[3] Thereturn key moves the input focus to the next widget in focus order.

[4] The Home key moves the insertion cursor to the beginning of the entry. In booleanmode this key
is ignored.

[5] The End key moves the insertion cursor to the end of the entry. In boolean mode this key is
ignored.

[6] TheDelete key deletes the character to the right of the insertion cursor. In booleanmode this key
is ignored.

[7] The BackSpace key and Control-h delete the character to the left of the insertion cursor. In
booleanmode this key is ignored.

[8] The space key deletes from the insertion cursor until the end of the entry, if the mode isinteger,
unsigned, float or regexp. For regexp mode, the space character must not be part of the regular
expression to achieve this behaviour. Otherwise it is treated as all other printable keys. Inboolean
mode this key toggles the entry’s value.

[9] All other printable keys are checked according to the entry’s mode. If allowed they overtype the
character under the insertion cursor, otherwise they are ignored and the terminal’s bell is rung.
Lower case characters are automatically converted to upper case, if the regular expression filters
denies lower case characters but allows upper case characters.

[10] FocusIn is bound to display the entry with there verseattribute for monochrome screens or with
swapped foreground and background colors on color screens; additionally, the insertion cursor is
placed on the very first character in the entry.

[11] FocusOut is bound to restore the visual effects of FocusIn, i.e. on mononochrome screens, the
re verseattribute is removed, on color screens, the foreground and background colors are restored
to their original values. For integer, unsigned, and float modes, the entry’s value is finally
checked using thescanTcl command.If the value is legal i t is restored into the entry as the return
from thescan, thus giving the Tcl canonical form for the value, i.e. no leading zeros for integral
values (which otherwise could be interpreted as octal numbers) and a decimal point with at least
one fractional digit for floating point values (which otherwise could be interpreted as integral num-
bers). If thescan conversion fails, the value specified in the−default option is stored into the
entry.

KEYW ORDS
entry, input

24 8.0 Ck

exit(n) Ck Built-In Commands exit(n)

NAME
exit − Exit the process

SYNOPSIS
exit ?−noclear? ?returnCode?

DESCRIPTION
Terminate the process, returningreturnCode(an integer) to the system as the exit status. If returnCode
isn’t specified then it defaults to 0.This command replaces the Tcl command by the same name.It is iden-
tical to Tcl’s exit command except that before exiting it destroys all the windows managed by the process.
This allows various cleanup operations to be performed, such as restoring the terminal’s state and clearing
the terminal’s screen. Ifthe−noclearswitch is given, no screen clear takes place.

KEYW ORDS
exit, process

Ck 8.0 25

fileevent(n) CkBuilt-In Commands fileevent(n)

NAME
fileevent − Execute a script when a file becomes readable or writable

SYNOPSIS
fileevent fileId readable?script?
fileevent fileId writable ?script?

DESCRIPTION
This command is used to createfile event handlers. A file event handler is a binding between a file and a
script, such that the script is evaluated whenever the file becomes readable or writable.File event handlers
are most commonly used to allow data to be received from a child process on an event-driven basis, so that
the receiver can continue to interact with the user while waiting for the data to arrive. If an application
invokes gets or read when there is no input data available, the process will block;until the input data
arrives, it will not be able to service other events, so it will appear to the user to ‘‘freeze up’’. With
fileevent, the process can tell when data is present and only invokegetsor read when they won’t block.

The fileId argument tofileevent refers to an open file; it must bestdin, stdout, stderr, or the return value
from some previousopencommand. Ifthescript argument is specified, thenfileevent creates a new event
handler: script will be evaluated whenever the file becomes readable or writable (depending on the second
argument tofileevent). In this casefileevent returns an empty string.The readable andwritable ev ent
handlers for a file are independent, and may be created and deleted separately. Howev er, there may be at
most onereadableand onewritable handler for a file at a given time. If fileevent is called when the speci-
fied handler already exists, the new script replaces the old one.

If the script argument is not specified,fileevent returns the current script forfileId, or an empty string if
there is none.If the script argument is specified as an empty string then the event handler is deleted, so that
no script will be invoked. A file event handler is also deleted automatically whenever its file is closed or its
interpreter is deleted.

A fi le is considered to be readable whenever thegetsandread commands can return without blocking.A
file is also considered to be readable if an end-of-file or error condition is present.It is important forscript
to check for these conditions and handle them appropriately;for example, if there is no special check for
end-of-file, an infinite loop may occur wherescript reads no data, returns, and is immediately invoked
again.

When usingfileevent for event-driven I/O, it’s important to read the file in the same units that are written
from the other end.For example, suppose that you are usingfileevent to read data generated by a child
process. Ifthe child process is writing whole lines, then you should usegets to read those lines.If the
child generates one line at a time then you shouldn’t make more than a single call togetsin script: the first
call will consume all the available data, so the second call may block.You can also useread to read the
child’s data, but only if you know how many bytes the child is writing at a time:if you try to read more
bytes than the child has written, theread call will block.

A fi le is considered to be writable if at least one byte of data can be written to the file without blocking, or
if an error condition is present.Write handlers are probably not very useful without additional command
support. Theputs command is dangerous since it write more than one byte at a time and may thus block.
What is really needed is a new non-blocking form of write that saves any data that couldn’t be written to the
file.

The script for a file event is executed at global level (outside the context of any Tcl procedure).If an error
occurs while executing the script then thetkerror mechanism is used to report the error. In addition, the
file event handler is deleted if it ever returns an error;this is done in order to prevent infinite loops due to
buggy handlers.

26 8.0 Ck

fileevent(n) CkBuilt-In Commands fileevent(n)

CREDITS
fileevent is based on theaddinput command created by Mark Diekhans.

SEE ALSO
tkerror

KEYW ORDS
asynchronous I/O, event handler, file, readable, script, writable

Ck 8.0 27

focus(n) CkBuilt-In Commands focus(n)

NAME
focus − Manage the input focus

SYNOPSIS
focus
focuswindow

DESCRIPTION
The focus command is used to manage the Ck input focus.At any giv en time, one window on the termi-
nal’s screen is designated as thefocus window; any key press events are sent to that window. The Tcl pro-
ceduresck_focusNextandck_focusPrev implement a focus order among the windows of a top-level; they
are used in the default bindings for Tab and Shift-Tab, among other things. Switching the focus among dif-
ferent top-levels is up to the user.

Thefocuscommand can take any of the following forms:

focus Returns the path name of the focus window or an empty string if no window in the application has
the focus.

focuswindow
This command sets the input focus towindowand returns an empty string. Ifwindowis in a differ-
ent top-level than the current input focus window, thenwindow’s top-level is automatically raised
just as if theraise Tcl command had been invoked. If window is an empty string then the com-
mand does nothing.

KEYW ORDS
ev ents, focus, keyboard, top-level

28 8.0 Ck

frame(n) CkBuilt-In Commands frame(n)

NAME
frame − Create and manipulate frame widgets

SYNOPSIS
frame pathName ?options?

STANDARD OPTIONS
attrib utes border foreground takefocus
background

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: class
Class: Class
Command-Line Switch: −class

Specifies a class for the window. This class will be used when querying the option database for
the window’s other options, and it will also be used later for other purposes such as bindings.The
classoption may not be changed with theconfigurewidget command.

Name: height
Class: Height
Command-Line Switch: −height

Specifies the desired height for the window in screen lines.If this option is equal to zero then the
window will not request any size at all.

Name: width
Class: Width
Command-Line Switch: −width

Specifies the desired width for the window in screen columns.If this option is equal to zero then
the window will not request any size at all.

DESCRIPTION
The frame command creates a new window (given by the pathNameargument) and makes it into a frame
widget. Additionaloptions, described above, may be specified on the command line or in the option
database to configure aspects of the frame such as its background color and attributes. Theframe com-
mand returns the path name of the new window.

A frame is a simple widget.Its primary purpose is to act as a spacer or container for complex window lay-
outs. Theonly features of a frame are its background color, attributes and border.

WIDGET COMMAND
The frame command creates a new Tcl command whose name is the same as the path name of the frame’s
window. This command may be used to invoke various operations on the widget.It has the following gen-
eral form:

pathName option?arg arg ...?

PathNameis the name of the command, which is the same as the frame widget’s path name.Optionand the
args determine the exact behavior of the command.The following commands are possible for frame wid-
gets:

Ck 8.0 29

frame(n) CkBuilt-In Commands frame(n)

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by theframe command.

pathNameconfigure?option??value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
theframe command.

BINDINGS
When a new frame is created, it has no default event bindings: frames are not intended to be interactive.

KEYW ORDS
frame, widget

30 8.0 Ck

grid(n) CkBuilt-In Commands grid(n)

NAME
grid − Geometry manager that arranges widgets in a grid

SYNOPSIS
grid option arg ?arg ...?

DESCRIPTION
Thegrid command is used to communicate with the grid geometry manager that arranges widgets in rows
and columns inside of another window, called the geometry master (or master window). The grid com-
mand can have any of sev eral forms, depending on theoptionargument:

grid slave?slave ...? ?options?
If the first argument togrid is a window name (any value starting with ‘‘.’’), then the command is
processed in the same way asgrid configure.

grid bbox master column row
The bounding box (in rows or columns) is returned for the space occupied by the grid position
indicated bycolumnand row. The return value consists of 4 integers. Thefirst two are the col-
umn/row offset from the master window (x then y) of the top-left corner of the grid cell, and the
second two are the width and height of the cell.

grid columnconfiguremaster index ?−option value...?
Query or set the column properties of theindex column of the geometry master, master. The valid
options are−minsizeand−weight. The −minsizeoption sets the minimum column size, and the
−weight option (a floating point value) sets the relative weight for apportioning any extra spaces
among columns.If no value is specified, the current value is returned.

grid configureslave?slave ...? ?options?
The arguments consist of the names of one or more slave windows followed by pairs of arguments
that specify how to manage the slaves. Thecharacters−, x and ˆ, can be specified instead of a
window name to alter the default location of aslave, as described in the ‘‘RELATIVE PLACE-
MENT’’ section, below. The following options are supported:

−column n
Insert the slave so that it occupies thenth column in the grid.Column numbers start with
0. If this option is not supplied, then the slave is arranged just to the right of previous
slave specified on this call togrid, or column "0" if it is the first slave. For eachx that
immediately precedes theslave, the column position is incremented by one.Thus thex
represents a blank column for this row in the grid.

−columnspann
Insert the slave so that it occupiesn columns in the grid.The default is one column,
unless the window name is followed by a−, in which case the columnspan is incremented
once for each immediately following −.

−ipadx amount
The amountspecifies how much horizontal internal padding to leave on each side of the
slave(s). Amountis specified in terminal columns. It defaults to 0.

−ipady amount
Theamountspecifies how much vertical internal padding to leave on on the top and bot-
tom of the slave(s). Amountis specified in terminal rows. It defaults to 0.

−padx amount
Theamountspecifies how much horizontal external padding to leave on each side of the
slave(s). Theamountdefaults to 0.

Ck 8.0 31

grid(n) CkBuilt-In Commands grid(n)

−pady amount
Theamountspecifies how much vertical external padding to leave on the top and bottom
of the slave(s). Theamountdefaults to 0.

−row n Insert the slave so that it occupies thenth row in the grid. Row numbers start with 0.If
this option is not supplied, then the slave is arranged on the same row as the previous
slave specified on this call togrid , or the first unoccupied row if this is the first slave.

−rowspann
Insert the slave so that it occupiesn rows in the grid.The default is one row. If the next
grid command containŝcharacters instead ofslavesthat line up with the columns of this
slave, then thero wspanof thisslaveis extended by one.

−sticky style
If a slave’s parcel is larger than its requested dimensions, this option may be used to posi-
tion (or stretch) the slave within its cavity. Style is a string that contains zero or more of
the charactersn, s, e or w. The string can optionally contains spaces or commas, but they
are ignored.Each letter refers to a side (north, south, east, or west) that the slave will
"stick" to. If both n ands (or e andw) are specified, the slave will be stretched to fill the
entire height (or width) of its cavity. The sticky option subsumes the combination of
−anchor and−fill that is used bypack. The default is {} , which causes the slave to be
centered in its cavity, at its requested size.

If any of the slaves are already managed by the geometry manager then any unspecified options for
them retain their previous values rather than receiving default values.

grid forgetslave?slave ...?
Removes each of theslaves from grid for its master and unmaps their windows. Theslaves will no
longer be managed by the grid geometry manager.

grid inf o slave
Returns a list whose elements are the current configuration state of the slave giv en by slavein the
same option-value form that might be specified togrid configure.

grid location master x y
Given x andy values in terminal columns/rows relative to the master window, the column and row
number at thatx andy location is returned.For locations that are above or to the left of the grid,-1
is returned.

grid pr opagatemaster?boolean?
If booleanhas a true boolean value such as1 or on then propagation is enabled formaster, which
must be a window name (see ‘‘GEOMETRY PROPA GATION’’ below). If booleanhas a false
boolean value then propagation is disabled formaster. In either of these cases an empty string is
returned. Ifbooleanis omitted then the command returns0 or 1 to indicate whether propagation is
currently enabled formaster. Propagation is enabled by default.

grid rowconfiguremaster index ?−option value...?
Query or set the row properties of theindex row of the geometry master, master. The valid options
are−minsizeand−weight. Minsize sets the minimum row size, in screen units, andweight sets
the relative weight for apportioning any extra spaces among rows. If no value is specified, the cur-
rent value is returned.

grid sizemaster
Returns the size of the grid (in columns then rows) for master. The size is determined either by
the slaveoccupying the largest row or column, or the largest column or row with a minsize or
weight.

32 8.0 Ck

grid(n) CkBuilt-In Commands grid(n)

grid slaves master?−option value?
If no options are supplied, a list of all of the slaves in masterare returned.Option can be either
−row or −column which causes only the slaves in the row (or column) specified byvalue to be
returned.

RELATIVE PLA CEMENT
The grid command contains a limited set of capabilities that permit layouts to be created without specify-
ing the row and column information for each slave. This permits slaves to be rearranged, added, or
removed without the need to explicitly specify row and column information.When no column or row
information is specified for aslave, default values are chosen forcolumn, ro w, columnspanandro wspan
at the time theslaveis managed. The values are chosen based upon the current layout of the grid, the posi-
tion of theslaverelative to otherslaves in the same grid command, and the presence of the characters−, ˆ,
andˆ in grid command whereslavenames are normally expected.

− This increases the columnspan of theslaveto the left. Several −’s in a row will succes-
sively increase the columnspan. S− may not follow a ˆ or ax.

x This leaves an empty column between theslaveon the left and theslaveon the right.

ˆ This extends thero wspan of theslaveabove the ˆ’s in the grid. The number of̂ ’s in a
row must match the number of columns spanned by theslaveabove it.

GEOMETRY PROPA GATION
Grid normally computes how large a master must be to just exactly meet the needs of its slaves, and it sets
the requested width and height of the master to these dimensions.This causes geometry information to
propagate up through a window hierarchy to a top-level window so that the entire sub-tree sizes itself to fit
the needs of the leaf windows. However, the grid pr opagatecommand may be used to turn off propaga-
tion for one or more masters.If propagation is disabled then grid will not set the requested width and
height of the master window. This may be useful if, for example, you wish for a master window to hav ea
fixed size that you specify.

RESTRICTIONS ON MASTER WINDO WS
The master for each slave must be the slave’s parent. Thisrestriction is necessary to guarantee that the
slave can be placed over any part of its master that is visible without danger of the slave being clipped by its
parent.

CREDITS
Thegrid command is based on theGridBag geometry manager written by D. Stein.

KEYW ORDS
geometry manager, location, grid, parcel, propagation, size, pack

Ck 8.0 33

label(n) CkBuilt-In Commands label(n)

NAME
label − Create and manipulate label widgets

SYNOPSIS
label pathName?options?

STANDARD OPTIONS
anchor foreground textVariable underlineForeground
attrib utes takeFocus underline
background text underlineAttrib utes

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: −height

Specifies a desired height for the label in screen lines.If this option isn’t specified, the label’s
desired height is 1 line.

Name: width
Class: Width
Command-Line Switch: −width

Specifies a desired width for the label in screen columns.If this option isn’t specified, the label’s
desired width is computed from the size of the text being displayed in it.

DESCRIPTION
The label command creates a new window (given by the pathNameargument) and makes it into a label
widget. Additionaloptions, described above, may be specified on the command line or in the option
database to configure aspects of the label such as its colors, font, text, and initial relief. The label com-
mand returns itspathNameargument. Atthe time this command is invoked, there must not exist a window
namedpathName, but pathName’s parent must exist.

A label is a widget that displays a textual string. The label can be manipulated in a few simple ways, such
as changing its attributes or text, using the commands described below.

WIDGET COMMAND
The label command creates a new Tcl command whose name ispathName. This command may be used to
invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for label widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thelabel command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in

34 8.0 Ck

label(n) CkBuilt-In Commands label(n)

this case the command returns an empty string.Option may have any of the values accepted by
the label command.

BINDINGS
When a new label is created, it has no default event bindings: labels are not intended to be interactive.

KEYW ORDS
label, widget

Ck 8.0 35

listbox(n) CkBuilt-In Commands listbox(n)

NAME
listbox − Create and manipulate listbox widgets

SYNOPSIS
listbox pathName?options?

STANDARD OPTIONS
activeAttrib utes attributes selectAttributes takeFocus
activeBackground background selectBackground xScrollCommand
activeForeground foreground selectForeground yScrollCommand

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: −height

Specifies the desired height for the window, in lines. Ifzero or less, then the desired height for the
window is made just large enough to hold all the elements in the listbox.

Name: selectMode
Class: SelectMode
Command-Line Switch: −selectmode

Specifies one of several styles for manipulating the selection.The value of the option may be arbi-
trary, but the default bindings expect it to be eithersingle, browseor multiple ; the default value is
browse.

Name: width
Class: Width
Command-Line Switch: −width

Specifies the desired width for the window in characters. Ifzero or less, then the desired width for
the window is made just large enough to hold all the elements in the listbox.

DESCRIPTION
The listbox command creates a new window (given by thepathNameargument) and makes it into a listbox
widget. Additionaloptions, described above, may be specified on the command line or in the option
database to configure aspects of the listbox such as its colors, attributes and text. The listbox command
returns itspathNameargument. Atthe time this command is invoked, there must not exist a window
namedpathName, but pathName’s parent must exist.

A l istbox is a widget that displays a list of strings, one per line.When first created, a new listbox has no
elements. Elementsmay be added or deleted using widget commands described below. In addition, one or
more elements may be selected as described below.

It is not necessary for all the elements to be displayed in the listbox window at once; commandsdescribed
below may be used to change the view in the window. Listboxes allow scrolling in both directions using
the standardxScrollCommand andyScrollCommand options.

INDICES
Many of the widget commands for listboxes take one or more indices as arguments. Anindex specifies a
particular element of the listbox, in any of the following ways:

number Specifies the element as a numerical index, where 0 corresponds to the first element in the
listbox.

36 8.0 Ck

listbox(n) CkBuilt-In Commands listbox(n)

active Indicates the element that has the location cursor. This element will be displayed with the
activeAttrib utes, activeBackground, and activeForeground options if the keyboard focus
is in the listbox. The element is specified with theactivate widget command.

anchor Indicates the anchor point for the selection, which is set with theselection anchorwidget
command.

end Indicates the end of the listbox.For some commands this means just after the last element;
for other commands it means the last element.

@x,y Indicates the element that covers the point in the listbox window specified byx and y (in
screen coordinates). If no element covers that point, then the closest element to that point is
used.

In the widget command descriptions below, arguments namedindex, first, and last always contain text
indices in one of the above forms.

WIDGET COMMAND
The listbox command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget. It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for listbox widgets:

pathNameactivate index
Sets the active element to the one indicated byindex. The active element is drawn with the
activeAttrib utes, activeBackground, and activeForeground options when the widget has the
input focus, and its index may be retrieved with the index active.

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thelistbox command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
the listbox command.

pathNamecurselection
Returns a list containing the numerical indices of all of the elements in the listbox that are cur-
rently selected.If there are no elements selected in the listbox then an empty string is returned.

pathNamedeletefirst ?last?
Deletes one or more elements of the listbox.First andlast are indices specifying the first and last
elements in the range to delete.If last isn’t specified it defaults tofirst, i.e. a single element is
deleted.

pathNamegetfirst ?last?
If last is omitted, returns the contents of the listbox element indicated byfirst. If last is specified,
the command returns a list whose elements are all of the listbox elements betweenfirst and last,
inclusive. Bothfirst andlastmay have any of the standard forms for indices.

Ck 8.0 37

listbox(n) CkBuilt-In Commands listbox(n)

pathNameindex index
Returns a decimal string giving the integer index value that corresponds toindex.

pathNameinsert index ?element element ...?
Inserts zero or more new elements in the list just before the element given by index. If index is
specified asend then the new elements are added to the end of the list.Returns an empty string.

pathNamenearesty
Given a y-coordinate within the listbox window, this command returns the index of the (visible)
listbox element nearest to that y-coordinate.

pathNameseeindex
Adjust the view in the listbox so that the element given by index is visible. If the element is
already visible then the command has no effect; if the element is near one edge of the window then
the listbox scrolls to bring the element into view at the edge;otherwise the listbox scrolls to center
the element.

pathNameselectionoption arg
This command is used to adjust the selection within a listbox.It has several forms, depending on
option:

pathNameselection anchorindex
Sets the selection anchor to the element given by index. The selection anchor is the end
of the selection that is fixed while dragging out a selection with the mouse.The index
anchor may be used to refer to the anchor element.

pathNameselection clearfirst ?last?
If any of the elements betweenfirst and last (inclusive) are selected, they are deselected.
The selection state is not changed for elements outside this range.

pathNameselection includesindex
Returns 1 if the element indicated byindex is currently selected, 0 if it isn’t.

pathNameselection setfirst ?last?
Selects all of the elements in the range betweenfirst andlast, inclusive, without affecting
the selection state of elements outside that range.

pathNamesize
Returns a decimal string indicating the total number of elements in the listbox.

pathNamexview args
This command is used to query and change the horizontal position of the information in the wid-
get’s window. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Eachelement is a real fraction between 0 and 1;
together they describe the horizontal span that is visible in the window. For example, if
the first element is .2 and the second element is .6, 20% of the listbox’s text is off -screen
to the left, the middle 40% is visible in the window, and 40% of the text is off-screen to
the right. These are the same values passed to scrollbars via the−xscrollcommand
option.

pathNamexview index
Adjusts the view in the window so that the character position given by index is displayed
at the left edge of the window. Character positions are defined by the width of the char-
acter0.

pathNamexview moveto fraction
Adjusts the view in the window so that fractionof the total width of the listbox text is off-
screen to the left.fractionmust be a fraction between 0 and 1.

38 8.0 Ck

listbox(n) CkBuilt-In Commands listbox(n)

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer. Whatmust be eitherunits or pagesor an abbreviation of one
of these. If what is units, the view adjusts left or right bynumbercharacter units (the
width of the0 character) on the display;if it is pagesthen the view adjusts bynumber
screenfuls. Ifnumberis negative then characters farther to the left become visible;if it is
positive then characters farther to the right become visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the text in the widget’s window.
It can take any of the following forms:

pathNameyview
Returns a list containing two elements, both of which are real fractions between 0 and 1.
The first element gives the position of the listbox element at the top of the window, rela-
tive to the listbox as a whole (0.5 means it is halfway through the listbox, for example).
The second element gives the position of the listbox element just after the last one in the
window, relative to the listbox as a whole.These are the same values passed to scrollbars
via the−yscrollcommandoption.

pathNameyview index
Adjusts the view in the window so that the element given by index is displayed at the top
of the window.

pathNameyview moveto fraction
Adjusts the view in the window so that the element given by fractionappears at the top of
the window. Fr action is a fraction between 0 and 1;0 indicates the first element in the
listbox, 0.33 indicates the element one-third the way through the listbox, and so on.

pathNameyview scroll number what
This command adjusts the view in the window up or down according tonumberand
what. Numbermust be an integer. Whatmust be eitherunits or pages. If what is units,
the view adjusts up or down bynumberlines; if it is pagesthen the view adjusts bynum-
ber screenfuls. Ifnumberis negative then earlier elements become visible;if it is posi-
tive then later elements become visible.

DEFAULT B INDINGS
Ck automatically creates class bindings for listboxes. Much of the behavior of a listbox is determined by its
selectModeoption, which selects one of three ways of dealing with the selection.

If the selection mode issingle or browse, at most one element can be selected in the listbox at once.In
both modes, clicking button 1 on an element selects it and deselects any other selected item.

If the selection mode ismultiple , any number of elements may be selected at once, including discontiguous
ranges. Clickingbutton 1 on an element toggles its selection state without affecting any other elements.

Most people will probably want to usebrowsemode for single selections andmultiple mode for multiple
selections.

In addition to the above behavior, the following additional behavior is defined by the default bindings:

[1] If the Up or Down key is pressed, the location cursor (active element) moves up or down one ele-
ment. If the selection mode isbrowse then the new active element is also selected and all other
elements are deselected.

[2] TheLeft and Right keys scroll the listbox view left and right by the one column.

[3] The Prior and Next keys scroll the listbox view up and down by one page (the height of the win-
dow).

Ck 8.0 39

listbox(n) CkBuilt-In Commands listbox(n)

[4] TheHome and End keys scroll the listbox horizontally to the left and right edges, respectively.

[5] Thespace and Select keys make aselection at the location cursor (active element) just as if mouse
button 1 had been pressed over this element.

The behavior of listboxes can be changed by defining new bindings for individual widgets or by redefining
the class bindings.

KEYW ORDS
listbox, widget

40 8.0 Ck

lower(n) CkBuilt-In Commands lower(n)

NAME
lower − Change a window’s position in the stacking order

SYNOPSIS
lower window?belowThis?

DESCRIPTION
If the belowThisargument is omitted then the command lowerswindowso that it is below all of its siblings
in the stacking order (it will be obscured by any siblings that overlap it and will not obscure any siblings).
If belowThisis specified then it must be the path name of a window that is either a sibling ofwindowor the
descendant of a sibling ofwindow. In this case thelower command will insertwindow into the stacking
order just below belowThis(or the ancestor ofbelowThisthat is a sibling ofwindow); this could end up
either raising or loweringwindow.

KEYW ORDS
lower, obscure, stacking order

Ck 8.0 41

menu(n) CkBuilt-In Commands menu(n)

NAME
menu − Create and manipulate menu widgets

SYNOPSIS
menupathName?options?

STANDARD OPTIONS
activeAttrib utes background disabledForeground underlineForeground
activeBackground border foreground
activeForeground disabledAttributes takeFocus
attrib utes disabledBackground underlineAttrib utes

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: postCommand
Class: Command
Command-Line Switch: −postcommand

If this option is specified then it provides a Tcl command to execute each time the menu is posted.
The command is invoked by thepostwidget command before posting the menu.

Name: selectColor
Class: Background
Command-Line Switch: −selectcolor

For menu entries that are check buttons or radio buttons, this option specifies the color to display
in the indicator when the check button or radio button is selected. On color terminals this defaults
to red, on monochrome terminals to white.

INTRODUCTION
Themenucommand creates a new top-level window (given by thepathNameargument) and makes it into a
menu widget.Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the menu such as its colors and font.Themenu command returns itspath-
Nameargument. Atthe time this command is invoked, there must not exist a window namedpathName,
but pathName’s parent must exist.

A menu is a widget that displays a collection of one-line entries arranged in a column.There exist several
different types of entries, each with different properties.Entries of different types may be combined in a
single menu.Menu entries are not the same as entry widgets. In fact, menu entries are not even distinct
widgets; the entire menu is one widget.

Menu entries are displayed with up to three separate fields.The main field is a label in the form of a text
string. If the −accelerator option is specified for an entry then a second textual field is displayed to the
right of the label.The accelerator typically describes a keystroke sequence that may be typed in the appli-
cation to cause the same result as invoking the menu entry. The third field is anindicator. The indicator is
present only for checkbutton or radiobutton entries.It indicates whether the entry is selected or not, and is
displayed to the left of the entry’s string.

In normal use, an entry becomes active (displays itself differently) whenever the input focus is over the
entry. If a mouse button is pressed over the entry then the entry isinvoked. The effect of invocation is dif-
ferent for each type of entry; these effects are described below in the sections on individual entries.

Entries may bedisabled, which causes their labels and accelerators to be displayed with other colors.The
default menu bindings will not allow a disabled entry to be activated or invoked. Disabledentries may be
re-enabled, at which point it becomes possible to activate and invoke them again.

42 8.0 Ck

menu(n) CkBuilt-In Commands menu(n)

COMMAND ENTRIES
The most common kind of menu entry is a command entry, which behaves much like a button widget.
When a command entry is invoked, a Tcl command is executed. TheTcl command is specified with the
−commandoption.

SEPARATOR ENTRIES
A separator is an entry that is displayed as a horizontal dividing line. A separator may not be activated or
invoked, and it has no behavior other than its display appearance.

CHECKB UTTON ENTRIES
A checkbutton menu entry behaves much like a checkbutton widget.When it is invoked it toggles back and
forth between the selected and deselected states.When the entry is selected, a particular value is stored in a
particular global variable (as determined by the−onvalue and−variable options for the entry);when the
entry is deselected another value (determined by the−offvalue option) is stored in the global variable. An
indicator box is displayed to the left of the label in a checkbutton entry. If the entry is selected then the
indicator’s center is displayed in the color given by the-selectcoloroption for the entry; otherwise the indi-
cator’s center is displayed in the background color for the menu or menu entry. If a −commandoption is
specified for a checkbutton entry, then its value is evaluated as a Tcl command each time the entry is
invoked; thishappens after toggling the entry’s selected state.

RADIOB UTTON ENTRIES
A radiobutton menu entry behaves much like a radiobutton widget. Radiobutton entries are organized in
groups of which only one entry may be selected at a time.Whenever a particular entry becomes selected it
stores a particular value into a particular global variable (as determined by the−value and −variable
options for the entry).This action causes any previously-selected entry in the same group to deselect itself.
Once an entry has become selected, any change to the entry’s associated variable will cause the entry to
deselect itself.Grouping of radiobutton entries is determined by their associated variables: iftwo entries
have the same associated variable then they are in the same group.An indicator diamond is displayed to
the left of the label in each radiobutton entry. If the entry is selected then the indicator’s center is displayed
in the color given by the −selectcoloroption for the entry; otherwise the indicator’s center is displayed in
the background color for the menu or menu entry. If a −command option is specified for a radiobutton
entry, then its value is evaluated as a Tcl command each time the entry is invoked; thishappens after select-
ing the entry.

CASCADE ENTRIES
A cascade entry is one with an associated menu (determined by the−menu option). Cascadeentries allow
the construction of cascading menus.The postcascadewidget command can be used to post and unpost
the associated menu just to the right of the cascade entry. The associated menu must be a child of the menu
containing the cascade entry (this is needed in order for menu traversal to work correctly).

A cascade entry posts its associated menu by invoking a Tcl command of the form

menupostx y

wheremenuis the path name of the associated menu, andx andy are the root-window coordinates of the
upper-right corner of the cascade entry. The lower-level menu is unposted by executing a Tcl command
with the form

menuunpost

wheremenuis the name of the associated menu.

If a −commandoption is specified for a cascade entry then it is evaluated as a Tcl command whenever the
entry is invoked.

Ck 8.0 43

menu(n) CkBuilt-In Commands menu(n)

WIDGET COMMAND
The menu command creates a new Tcl command whose name ispathName. This command may be used
to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.

Many of the widget commands for a menu take as one argument an indicator of which entry of the menu to
operate on.These indicators are calledindexes and may be specified in any of the following forms:

number Specifies the entry numerically, where 0 corresponds to the top-most entry of the menu, 1 to
the entry below it, and so on.

active Indicates the entry that is currently active. If no entry is active then this form is equivalent to
none. This form may not be abbreviated.

end Indicates the bottommost entry in the menu.If there are no entries in the menu then this
form is equivalent tonone. This form may not be abbreviated.

last Same asend.

none Indicates ‘‘no entry at all’’; this is used most commonly with theactivate option to deacti-
vate all the entries in the menu.In most cases the specification ofnone causes nothing to
happen in the widget command.This form may not be abbreviated.

@number In this form,numberis treated as a y-coordinate in the menu’s window; theentry closest to
that y-coordinate is used.For example, ‘‘@0’’ i ndicates the top-most entry in the window.

pattern If the index doesn’t satisfy one of the above forms then this form is used.Pattern is pattern-
matched against the label of each entry in the menu, in order from the top down, until a
matching entry is found.The rules ofTcl_StringMatch are used.

The following widget commands are possible for menu widgets:

pathNameactivate index
Change the state of the entry indicated byindex to active and redisplay it using its active colors.
Any previously-active entry is deactivated. If index is specified asnone, or if the specified entry is
disabled, then the menu ends up with no active entry. Returns an empty string.

pathNameadd type?option value option value ...?
Add a new entry to the bottom of the menu.The new entry’s type is given by typeand must be
one ofcascade, checkbutton, command, radiobutton, or separator, or a unique abbreviation of
one of the above. If additional arguments are present, they specify any of the following options:

−activeattrib utesvalue
Specifies video attributes to use for displaying this entry when it is active. If this option
is specified as an empty string (the default), then theactiveAttrib utesoption for the over-
all menu is used.This option is not available for separator entries.

−activebackground value
Specifies a background color to use for displaying this entry when it is active. If this
option is specified as an empty string (the default), then theactiveBackground option for
the overall menu is used.This option is not available for separator entries.

−activeforeground value
Specifies a foreground color to use for displaying this entry when it is active. If this
option is specified as an empty string (the default), then theactiveForeground option for
the overall menu is used.This option is not available for separator entries.

44 8.0 Ck

menu(n) CkBuilt-In Commands menu(n)

−acceleratorvalue
Specifies a string to display at the right side of the menu entry. Normally describes an
accelerator keystroke sequence that may be typed to invoke the same function as the
menu entry. This option is not available for separator entries.

−attrib utesvalue
Specifies video attributes to use for displaying this entry when it is in the normal state
(neither active nor disabled).If this option is specified as an empty string (the default),
then theattrib utes option for the overall menu is used.This option is not available for
separator entries.

−background value
Specifies a background color to use for displaying this entry when it is in the normal state
(neither active nor disabled).If this option is specified as an empty string (the default),
then thebackground option for the overall menu is used.This option is not available for
separator entries.

−commandvalue
For command, checkbutton, and radiobutton entries, specifies a Tcl command to execute
when the menu entry is invoked. For cascade entries, specifies a Tcl command to execute
when the entry is activated (i.e. just before its submenu is posted).Not available for sepa-
rator entries.

−foreground value
Specifies a foreground color to use for displaying this entry when it is in the normal state
(neither active nor disabled).If this option is specified as an empty string (the default),
then theforeground option for the overall menu is used.This option is not available for
separator entries.

−indicatoron value
Av ailable only for checkbutton and radiobutton entries.Value is a boolean that deter-
mines whether or not the indicator should be displayed.

−label value
Specifies a string to display as an identifying label in the menu entry. Not available for
separator entries.

−menuvalue
Av ailable only for cascade entries.Specifies the path name of the submenu associated
with this entry. The submenu must be a child of the menu.

−offvaluevalue
Av ailable only for checkbutton entries.Specifies the value to store in the entry’s associ-
ated variable when the entry is deselected.

−onvalue value
Av ailable only for checkbutton entries.Specifies the value to store in the entry’s associ-
ated variable when the entry is selected.

−selectcolorvalue
Av ailable only for checkbutton and radiobutton entries.Specifies the color to display in
the indicator when the entry is selected.If the value is an empty string (the default) then
theselectColoroption for the menu determines the indicator color.

−statevalue
Specifies one of three states for the entry:normal, active, or disabled. In normal state
the entry is displayed using theattrib utes, foreground, and background options for the
entry or for the menu.The active state is typically used when the input focus is in the
entry. In active state the entry is displayed using theactiveAttrib utes,

Ck 8.0 45

menu(n) CkBuilt-In Commands menu(n)

activeForeground, and activeBackground options for the entry or for the menu.Dis-
abled state means that the entry should be insensitive: the default bindings will refuse to
activate or invoke the entry. In this state the entry is displayed according to thedisable-
dAttrib utes, disabledForeground, and disabledBackground options for the menu.
This option is not available for separator entries.

−underline value
Specifies the integer index of a character to underline in the entry. This option is also
queried by the default bindings and used to implement keyboard traversal. 0corresponds
to the first character of the text displayed in the entry, 1 to the next character, and so on.
This option is not available for separator entries.

−underlineAttrib utesvalue
Specifies video attributes to use for displaying the underlined character in this entry when
it is in the normal state (neither active nor disabled). If this option is specified as an
empty string (the default), then theunderlineAttrib utes option for the overall menu is
used. Thisoption is not available for separator entries.

−underlineForeground value
Specifies a foreground color to use for displaying the underlined character in this entry
when it is in the normal state (neither active nor disabled).If this option is specified as an
empty string (the default), then theunderlineForeground option for the overall menu is
used. Thisoption is not available for separator entries.

−valuevalue
Av ailable only for radiobutton entries.Specifies the value to store in the entry’s associ-
ated variable when the entry is selected.

−variable value
Av ailable only for checkbutton and radiobutton entries.Specifies the name of a global
value to set when the entry is selected.For checkbutton entries the variable is also set
when the entry is deselected.For radiobutton entries, changing the variable causes the
currently-selected entry to deselect itself.

Theadd widget command returns an empty string.

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by themenucommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
themenucommand.

pathNamedeleteindex1?index2?
Delete all of the menu entries betweenindex1 and index2 inclusive. If index2 is omitted then it
defaults toindex1.

pathNameentrycget index option
Returns the current value of a configuration option for the entry given by index. Optionmay have
any of the values accepted by theadd widget command.

46 8.0 Ck

menu(n) CkBuilt-In Commands menu(n)

pathNameentryconfigure index ?options?
This command is similar to theconfigure command, except that it applies to the options for an
individual entry, whereasconfigure applies to the options for the menu as a whole.Optionsmay
have any of the values accepted by theadd widget command.If optionsare specified, options are
modified as indicated in the command and the command returns an empty string.If no optionsare
specified, returns a list describing the current options for entryindex.

pathNameindex index
Returns the numerical index corresponding toindex, or none if index was specified asnone.

pathNameinsert index type?option value option value ...?
Same as theadd widget command except that it inserts the new entry just before the entry given
by index, instead of appending to the end of the menu.Thetype, option, andvaluearguments have
the same interpretation as for theadd widget command.It is not possible to insert new menu
entries before the tear-off entry, if the menu has one.

pathNameinvoke index
Invoke the action of the menu entry. See the sections on the individual entries above for details on
what happens.If the menu entry is disabled then nothing happens.If the entry has a command
associated with it then the result of that command is returned as the result of theinvoke widget
command. Otherwisethe result is an empty string.Note: invoking a menu entry does not auto-
matically unpost the menu;the default bindings normally take care of this before invoking the
invoke widget command.

pathNamepostx y
Arrange for the menu to be displayed on the screen at the root-window coordinates given by x and
y. These coordinates are adjusted if necessary to guarantee that the entire menu is visible on the
screen. Thiscommand normally returns an empty string.If the postCommandoption has been
specified, then its value is executed as a Tcl script before posting the menu and the result of that
script is returned as the result of thepost widget command.If an error returns while executing the
command, then the error is returned without posting the menu.

pathNamepostcascadeindex
Posts the submenu associated with the cascade entry given by index, and unposts any previously
posted submenu.If index doesn’t correspond to a cascade entry, or if pathNameisn’t posted, the
command has no effect except to unpost any currently posted submenu.

pathNametype index
Returns the type of the menu entry given by index. This is thetypeargument passed to theadd
widget command when the entry was created, such ascommandor separator.

pathNameunpost
Unmap the window so that it is no longer displayed.If a lower-level cascaded menu is posted,
unpost that menu.Returns an empty string.

pathNameyposition index
Returns a decimal string giving the y-coordinate within the menu window of the line in the entry
specified byindex.

MENU CONFIGURA TIONS
The default bindings support two different ways of using menus:

Pulldown Menus
This is the most common case.You create one menubutton widget for each top-level menu, and
typically you arrange a series of menubuttons in a row in a menubar window. You also create the
top-level menus and any cascaded submenus, and tie them together with−menu options in
menubuttons and cascade menu entries.The top-level menu must be a child of the menubutton,
and each submenu must be a child of the menu that refers to it.Once you have done this, the

Ck 8.0 47

menu(n) CkBuilt-In Commands menu(n)

default bindings will allow users to traverse and invoke the tree of menus via its menubutton; see
themenubutton manual entry for details.

Option Menus
An option menu consists of a menubutton with an associated menu that allows you to select one of
several values. Thecurrent value is displayed in the menubutton and is also stored in a global
variable. Usetheck_optionMenu procedure to create option menubuttons and their menus.

DEFAULT B INDINGS
Ck automatically creates class bindings for menus that give them the following default behavior:

[1] Whenbutton 1 is pressed on a menu, the active entry (if any) is invoked. Themenu also unposts.

[2] TheSpace and Return keys inv oke the active entry and unpost the menu.

[3] If any of the entries in a menu have letters underlined with with−underline option, then pressing
one of the underlined letters (or its upper-case or lower-case equivalent) invokes that entry and
unposts the menu.

[4] TheEscape key aborts a menu selection in progress without invoking any entry. It also unposts the
menu.

[5] The Up and Down keys activate the next higher or lower entry in the menu.When one end of the
menu is reached, the active entry wraps around to the other end.

[6] The Left key moves to the next menu to the left.If the current menu is a cascaded submenu, then
the submenu is unposted and the current menu entry becomes the cascade entry in the parent.If
the current menu is a top-level menu posted from a menubutton, then the current menubutton is
unposted and the next menubutton to the left is posted.Otherwise the key has no effect. Theleft-
right order of menubuttons is determined by their stacking order:Ck assumes that the lowest
menubutton (which by default is the first one created) is on the left.

[7] TheRight key moves to the next menu to the right.If the current entry is a cascade entry, then the
submenu is posted and thecurrent menu entry becomes the first entry in the submenu.Otherwise,
if the current menu was posted from a menubutton, then the current menubutton is unposted and
the next menubutton to the right is posted.

Disabled menu entries are non-responsive: they don’t activate and they ignore mouse button presses and
releases.

The behavior of menus can be changed by defining new bindings for individual widgets or by redefining the
class bindings.

BUGS
At present it isn’t possible to use the option database to specify values for the options to individual entries.

KEYW ORDS
menu, widget

48 8.0 Ck

menubutton(n) CkBuilt-In Commands menubutton(n)

NAME
menubutton − Create and manipulate menubutton widgets

SYNOPSIS
menubutton pathName?options?

STANDARD OPTIONS
activeAttrib utes attributes disabledForeground textVariable
activeBackground background foreground underline
activeForeground disabledAttributes takeFocus underlineAttributes
anchor disabledBackground text underlineForeground

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: −height

Specifies a desired height for the menubutton in screen lines.If this option isn’t specified, the
menubutton’s desired height is 1 line.

Name: indicatorForeground
Class: IndicatorF oreground
Command-Line Switch: −indicatorforeground

Color in which the indicator rectangle, if any, is drawn. Oncolor terminals this defaults to red, on
monochrome terminals to white.

Name: indicatorOn
Class: IndicatorOn
Command-Line Switch: −indicatoron

The value must be a proper boolean value. If it is true then a small indicator rectangle will be dis-
played on the right side of the menubutton and the default menu bindings will treat this as an
option menubutton. If false then no indicator will be displayed.

Name: menu
Class: MenuName
Command-Line Switch: −menu

Specifies the path name of the menu associated with this menubutton. Themenu must be a child
of the menubutton.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of three states for the menubutton: normal, active, or disabled. In normal state the
menubutton is displayed using theattrib utes, foreground, and background options. Theactive
state is typically used when the input focus is in the menubutton. Inactive state the menubutton is
displayed using theactiveAttrib utes, activeForeground, and activeBackground options. Dis-
abled state means that the menubutton should be insensitive: the default bindings will refuse to
activate the widget and will ignore mouse button presses.In this state thedisabledAttrib utes,
disabledForeground, anddisabledBackground options determine how the button is displayed.

Name: width
Class: Width
Command-Line Switch: −width

Specifies a desired width for the menubutton in screen columns.If this option isn’t specified, the
menubutton’s desired width is computed from the size of the text being displayed in it.

Ck 8.0 49

menubutton(n) CkBuilt-In Commands menubutton(n)

INTRODUCTION
The menubutton command creates a new window (given by the pathNameargument) and makes it into a
menubutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the menubutton such as its colors, attributes, and text. The
menubutton command returns itspathNameargument. Atthe time this command is invoked, there must
not exist a window namedpathName, but pathName’s parent must exist.

A menubutton is a widget that displays a textual string and is associated with a menu widget.One of the
characters may optionally be underlined using theunderline, underlineAttrib utes, and underlineFore-
ground options. Innormal usage, pressing mouse button 1 over the menubutton causes the associated
menu to be posted just underneath the menubutton.

There are several interactions between menubuttons and menus;see themenu manual entry for informa-
tion on various menu configurations, such as pulldown menus and option menus.

WIDGET COMMAND
Themenubutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for menubutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by themenubutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
themenubutton command.

DEFAULT B INDINGS
Ck automatically creates class bindings for menubuttons that give them the following default behavior:

[1] A menubutton activates whenever it gets the input focus and deactivates whenever it loses the
input focus.

[2] Pressingmouse button 1 over a menubutton posts the menubutton: its associated menu is posted
under the menubutton. Oncea menu entry has been invoked, the menubutton unposts itself.

[3] Whena menubutton is posted, its associated menu claims the input focus to allow keyboard traver-
sal of the menu and its submenus.See themenumanual entry for details on these bindings.

[4] The F10 key may be typed in any window to post the first menubutton under its toplevel window
that isn’t disabled.

[5] If a menubutton has the input focus, the space and return keys post the menubutton.

If the menubutton’s state isdisabled then none of the above actions occur:the menubutton is completely

50 8.0 Ck

menubutton(n) CkBuilt-In Commands menubutton(n)

non-responsive.

The behavior of menubuttons can be changed by defining new bindings for individual widgets or by
redefining the class bindings.

KEYW ORDS
menubutton, widget

Ck 8.0 51

message(n) CkBuilt-In Commands message(n)

NAME
message − Create and manipulate message widgets

SYNOPSIS
messagepathName?options?

STANDARD OPTIONS
anchor background takeFocus textVariable
attrib utes foreground text

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: aspect
Class: Aspect
Command-Line Switch: −aspect

Specifies a non-negative integer value indicating desired aspect ratio for the text. Theaspect ratio
is specified as 100*width/height.100 means the text should be as wide as it is tall, 200 means the
text should be twice as wide as it is tall, 50 means the text should be twice as tall as it is wide, and
so on. Used to choose line length for text if width option isn’t specified. Defaults to 320.

Name: justify
Class: Justify
Command-Line Switch: −justify

Specifies how to justify lines of text. Mustbe one ofleft, center, or right . Defaults toleft. This
option works together with theanchor, aspect, and width options to provide a variety of arrange-
ments of the text within the window. The aspectand width options determine the amount of
screen space needed to display the text. Theanchor option determines where this rectangular area
is displayed within the widget’s window, and thejustify option determines how each line is dis-
played within that rectangular region. For example, supposeanchor is e and justify is left, and
that the message window is much larger than needed for the text. Thethe text will displayed so
that the left edges of all the lines line up; the entire text block will be centered in the vertical span
of the window.

Name: width
Class: Width
Command-Line Switch: −width

Specifies the length of lines in the window in screen columns.If this option has a value greater
than zero then theaspectoption is ignored and thewidth option determines the line length.If this
option has a value equal to zero, then theaspectoption determines the line length.

DESCRIPTION
Themessagecommand creates a new window (given by thepathNameargument) and makes it into a mes-
sage widget.Additional options, described above, may be specified on the command line or in the option
database to configure aspects of the message such as its colors, attributes, and text. Themessagecommand
returns itspathNameargument. Atthe time this command is invoked, there must not exist a window
namedpathName, but pathName’s parent must exist.

A message is a widget that displays a textual string. A message widget has three special features.First, it
breaks up its string into lines in order to produce a given aspect ratio for the window. The line breaks are
chosen at word boundaries wherever possible (if not even a single word would fit on a line, then the word
will be split across lines).Newline characters in the string will force line breaks;they can be used, for
example, to leave blank lines in the display.

The second feature of a message widget is justification.The text may be displayed left-justified (each line

52 8.0 Ck

message(n) CkBuilt-In Commands message(n)

starts at the left side of the window), centered on a line-by-line basis, or right-justified (each line ends at the
right side of the window).

The third feature of a message widget is that it handles control characters and non-printing characters spe-
cially. Tab characters are replaced with enough blank space to line up on the next 8-character boundary.
Newlines cause line breaks.Other control characters (ASCII code less than 0x20) and characters not
defined in the font are displayed as a four-character sequence\xhh wherehh is the two-digit hexadecimal
number corresponding to the character.

WIDGET COMMAND
The messagecommand creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for message widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by themessagecommand.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
themessagecommand.

DEFAULT B INDINGS
When a new message is created, it has no default event bindings: messages are intended for output purposes
only.

BUGS
Tabs don’t work very well with text that is centered or right-justified.The most common result is that the
line is justified wrong.

KEYW ORDS
message, widget

Ck 8.0 53

option(n) CkBuilt-In Commands option(n)

NAME
option − Add/retrieve window options to/from the option database

SYNOPSIS
option add pattern value?priority?

option clear

option getwindow name class

option readfilefileName?priority?

DESCRIPTION
The option command allows you to add entries to the Ck option database or to retrieve options from the
database. Theadd form of the command adds a new option to the database.Pattern contains the option
being specified, and consists of names and/or classes separated by asterisks or dots, in the usual X format.
Value contains a text string to associate withpattern; this is the value that will be returned in invocations of
theoption getcommand. Ifpriority is specified, it indicates the priority level for this option (see below for
legal values); itdefaults tointeractive. This command always returns an empty string.

Theoption clear command clears the option database. This command always returns an empty string.

The option get command returns the value of the option specified forwindowundernameandclass. If
several entries in the option database matchwindow, name, and class, then the command returns whichever
was created with highestpriority level. If there are several matching entries at the same priority level, then
it returns whichever entry was most recently entered into the option database.If there are no matching
entries, then the empty string is returned.

The readfile form of the command readsfileName, which should have the standard format for an X
resource database such as.Xdefaults, and adds all the options specified in that file to the option database.
If priority is specified, it indicates the priority level at which to enter the options;priority defaults tointer-
active.

The priority arguments to theoption command are normally specified symbolically using one of the fol-
lowing values:

widgetDefault
Level 20. Usedfor default values hard-coded into widgets.

startupFile
Level 40. Usedfor options specified in application-specific startup files.

userDefault
Level 60. Usedfor options specified in user-specific defaults files, such as.Xdefaults, resource
databases loaded into the X server, or user-specific startup files.

interactive
Level 80. Usedfor options specified interactively after the application starts running.If priority
isn’t specified, it defaults to this level.

Any of the above keywords may be abbreviated. Inaddition, priorities may be specified numerically using
integers between 0 and 100, inclusive. The numeric form is probably a bad idea except for new priority
levels other than the ones given above.

KEYW ORDS
database, option, priority, retrieve

54 8.0 Ck

options(n) CkBuilt-In Commands options(n)

NAME
options − Standard options supported by widgets

DESCRIPTION
This manual entry describes the common configuration options supported by widgets in the Ck toolkit.
Every widget does not necessarily support every option (see the manual entries for individual widgets for a
list of the standard options supported by that widget), but if a widget does support an option with one of the
names listed below, then the option has exactly the effect described below.

In the descriptions below, ‘‘Name’’ refers to the option’s name in the option database ‘‘Class’’ refers to the
option’s class value in the option database.‘‘ Command-Line Switch’’ refers to the switch used in widget-
creation andconfigure widget commands to set this value. For example, if an option’s command-line
switch is−foreground and there exists a widget.a.b.c, then the command

.a.b.c configure −foreground black

may be used to specify the valueblack for the option in the the widget.a.b.c. Command-line switches may
be abbreviated, as long as the abbreviation is unambiguous.

Name: activeAttrib utes
Class: Attrib utes
Command-Line Switch: −activeattrib utes

Specifies video attributes to use when drawing active elements of widgets. This option must be a
proper Tcl list which may contain the elements:

blink r ev erse
bold standout
dim underline
normal

If the list is empty, thenormal attribute is automatically present.

Name: activeBackground
Class: Foreground
Command-Line Switch: −activebackground

Specifies background color to use when drawing active elements of widgets. Color specifications
are always symbolic; valid color names are:

black magenta
blue red
cyan yellow
green white

Name: activeForeground
Class: Background
Command-Line Switch: −activeforeground

Specifies foreground color to use when drawing active elements. Seeabove for possible colors.

Name: anchor
Class: Anchor
Command-Line Switch: −anchor

Specifies how the text in a widget is to be displayed in the widget.Must be one of the valuesn,
ne, e, se, s, sw, w, nw, or center. For example,nw means display the text such that its top-left
corner is at the top-left corner of the widget.

Ck 8.0 55

options(n) CkBuilt-In Commands options(n)

Name: attrib utes
Class: Attrib utes
Command-Line Switch: −attrib utes

Specifies video attributes to use when displaying the widget.SeeactiveAttrib utes for possible
values.

Name: background
Class: Background
Command-Line Switch: −background or −bg

Specifies the normal background color to use when displaying the widget. SeeactiveBackground
for possible colors.

Name: border
Class: Border
Command-Line Switch: −border

Specifies the characters used for drawing a border around a widget.This options must be a proper
Tcl list with exactly zero, one, three, six, or eight elements:

0 elements Noextra space for the border is allocated by the widget.

1 element All four sides of the border’s rectangle plus the corners are made from the sole ele-
ment.

3 elements Thefirst element is used for the rectangle’s corners, the second for the horizontal
sides, and the third for the vertical sides.

6 elements Theorder of elements in the rectangle is: upper left corner, horizontal side, upper
right corner, vertical side, lower right corner, lower left corner.

8 elements Eachelement gives corner and side, alternating, starting at the upper left corner of
the square, clockwise.

The list elements must be either a single character or a symbolic name of a graphical character. For
valid names of graphical characters refer to thecurses gcharcommand.

Name: disabledAttrib utes
Class: DisabledAttrib utes
Command-Line Switch: −disabledattributes

Specifies video attributes to use when drawing a disabled element.SeeactiveAttrib utes for pos-
sible values.

Name: disabledBackground
Class: DisabledBackground
Command-Line Switch: −disabledbackground

Specifies background color to use when drawing a disabled element.SeeactiveBackground for
possible colors.

Name: disabledForeground
Class: DisabledForeground
Command-Line Switch: −disabledforeground

Specifies foreground color to use when drawing a disabled element.SeeactiveBackground for
possible colors.

Name: foreground
Class: Foreground
Command-Line Switch: −foreground or −fg

56 8.0 Ck

options(n) CkBuilt-In Commands options(n)

Specifies the normal foreground color to use when displaying the widget.SeeactiveBackground
for possible colors.

Name: justify
Class: Justify
Command-Line Switch: −justify

When there are multiple lines of text displayed in a widget, this option determines how the lines
line up with each other. Must be one ofleft, center, or right . Left means that the lines’ left edges
all line up,center means that the lines’ centers are aligned, andright means that the lines’ right
edges line up.

Name: orient
Class: Orient
Command-Line Switch: −orient

For widgets that can lay themselves out with either a horizontal or vertical orientation, such as
scrollbars, this option specifies which orientation should be used.Must be eitherhorizontal or
vertical or an abbreviation of one of these.

Name: selectAttributes
Class: SelectAttributes
Command-Line Switch: −selectattributes

Specifies video attributes to use when displaying selected items.SeeactiveAttrib utes for possi-
ble values.

Name: selectBackground
Class: Foreground
Command-Line Switch: −selectbackground

Specifies the background color to use when displaying selected items. SeeactiveBackground for
possible colors.

Name: selectForeground
Class: Background
Command-Line Switch: −selectforeground

Specifies the foreground color to use when displaying selected items. SeeactiveBackground for
possible colors.

Name: takeFocus
Class: TakeFocus
Command-Line Switch: −takefocus

Provides information used when moving the focus from window to window via keyboard traversal
(e.g., Tab and BackTab). Beforesetting the focus to a window, the traversal scripts first check
whether the window is viewable (it and all its ancestors are mapped); if not, the window is
skipped. Next, the scripts consult the value of thetakeFocusoption. Avalue of0 means that this
window should be skipped entirely during keyboard traversal. 1 means that the this window
should always receive the input focus.An empty value means that the traversal scripts make the
decision about whether or not to focus on the window: thecurrent algorithm is to skip the window
if it is disabled or if it has no key bindings. If the value has any other form, then the traversal
scripts take the value, append the name of the window to it (with a separator space), and evaluate
the resulting string as a Tcl script.The script must return 0, 1, or an empty string;this value is
used just as if the option had that value in the first place.Note: this interpretation of the option is
defined entirely by the Tcl scripts that implement traversal: thewidget implementations ignore the
option entirely, so you can change its meaning if you redefine the keyboard traversal scripts.

Name: text

Ck 8.0 57

options(n) CkBuilt-In Commands options(n)

Class: Text
Command-Line Switch: −text

Specifies a string to be displayed inside the widget.The way in which the string is displayed
depends on the particular widget and may be determined by other options, such asanchor or jus-
tify .

Name: textVariable
Class: Variable
Command-Line Switch: −textvariable

Specifies the name of a variable. Thevalue of the variable is a text string to be displayed inside
the widget; if the variable value changes then the widget will automatically update itself to reflect
the new value. Theway in which the string is displayed in the widget depends on the particular
widget and may be determined by other options, such asanchor or justify .

Name: underline
Class: Underline
Command-Line Switch: −underline

Specifies the integer index of a character to underline in the widget.This option is used by the
default bindings to implement keyboard traversal for menu buttons and menu entries.0 corre-
sponds to the first character of the text displayed in the widget, 1 to the next character, and so on.

Name: underlineAttrib utes
Class: UnderlineAttrib utes
Command-Line Switch: −underlineattrib utes

Name: underlineForeground
Class: UnderlineForeground
Command-Line Switch: −underlineforeground

Specifies the foreground color to use when displaying an underlined character. SeeactiveBack-
ground for possible colors.

Name: xScrollCommand
Class: ScrollCommand
Command-Line Switch: −xscrollcommand

Specifies the prefix for a command used to communicate with horizontal scrollbars.When the
view in the widget’s window changes (or whenever anything else occurs that could change the dis-
play in a scrollbar, such as a change in the total size of the widget’s contents), the widget will gen-
erate a Tcl command by concatenating the scroll command and two numbers. Eachof the num-
bers is a fraction between 0 and 1, which indicates a position in the document.0 indicates the
beginning of the document, 1 indicates the end, .333 indicates a position one third the way through
the document, and so on.The first fraction indicates the first information in the document that is
visible in the window, and the second fraction indicates the information just after the last portion
that is visible. The command is then passed to the Tcl interpreter for execution. Typically the
xScrollCommand option consists of the path name of a scrollbar widget followed by ‘‘set’’, e.g.
‘‘ .x.scrollbar set’’: this will cause the scrollbar to be updated whenever the view in the window
changes. Ifthis option is not specified, then no command will be executed.

Name: yScrollCommand
Class: ScrollCommand
Command-Line Switch: −yscrollcommand

Specifies the prefix for a command used to communicate with vertical scrollbars.This option is
treated in the same way as thexScrollCommand option, except that it is used for vertical

58 8.0 Ck

options(n) CkBuilt-In Commands options(n)

scrollbars and is provided by widgets that support vertical scrolling. See the description of
xScrollCommand for details on how this option is used.

KEYW ORDS
class, name, standard option, switch

Ck 8.0 59

pack(n) CkBuilt-In Commands pack(n)

NAME
pack − Geometry manager that packs around edges of cavity

SYNOPSIS
pack option arg ?arg ...?

DESCRIPTION
Thepack command is used to communicate with the packer, a geometry manager that arranges the children
of a parent by packing them in order around the edges of the parent.Thepack command can have any of
several forms, depending on theoptionargument:

pack slave?slave ...? ?options?
If the first argument topack is a window name (any value starting with ‘‘.’’), then the command is
processed in the same way aspack configure.

pack configureslave?slave ...? ?options?
The arguments consist of the names of one or more slave windows followed by pairs of arguments
that specify how to manage the slaves. See‘‘ THE PACKER ALGORITHM’’ below for details on
how the options are used by the packer. The following options are supported:

−after other
Othermust the name of another window. Use its master as the master for the slaves, and
insert the slaves just afterother in the packing order.

−anchor anchor
Anchor must be a valid anchor position such asn or sw; it specifies where to position
each slave in its parcel.Defaults tocenter.

−beforeother
Othermust the name of another window. Use its master as the master for the slaves, and
insert the slaves just beforeother in the packing order.

−expandboolean
Specifies whether the slaves should be expanded to consume extra space in their master.
Booleanmay have any proper boolean value, such as1 or no. Defaults to 0.

−fill style
If a slave’s parcel is larger than its requested dimensions, this option may be used to
stretch the slave. Stylemust have one of the following values:

none Give the slave its requested dimensions plus any internal padding requested with
−ipadx or −ipady. This is the default.

x Stretch the slave horizontally to fill the entire width of its parcel (except leave
external padding as specified by−padx).

y Stretch the slave vertically to fill the entire height of its parcel (except leave
external padding as specified by−pady).

both Stretch the slave both horizontally and vertically.

−ipadx amount
Amountspecifies how much horizontal internal padding to leave on each side of the
slave(s). Amountmust be a valid screen distance, such as2 or .5c. It defaults to 0.

−ipady amount
Amountspecifies how much vertical internal padding to leave on each side of the slave(s).
Amount defaults to 0.

60 8.0 Ck

pack(n) CkBuilt-In Commands pack(n)

−padx amount
Amountspecifies how much horizontal external padding to leave on each side of the
slave(s). Amountdefaults to 0.

−pady amount
Amount specifies how much vertical external padding to leave on each side of the
slave(s). Amountdefaults to 0.

−sideside
Specifies which side of the master the slave(s) will be packed against. Mustbe left,
right , top, or bottom. Defaults totop.

If no −after or −before option is specified then each of the slaves will be inserted at the end of the
packing list for its parent unless it is already managed by the packer (in which case it will be left
where it is). If one of these options is specified then all the slaves will be inserted at the specified
point. If any of the slaves are already managed by the geometry manager then any unspecified
options for them retain their previous values rather than receiving default values.

pack forgetslave?slave ...?
Removes each of theslaves from the packing order for its master and unmaps their windows. The
slaves will no longer be managed by the packer.

pack info slave
Returns a list whose elements are the current configuration state of the slave giv en by slavein the
same option-value form that might be specified topack configure. The first two elements of the
list are ‘‘−in master’’ w heremasteris the slave’s master.

pack propagatemaster?boolean?
If booleanhas a true boolean value such as1 or on then propagation is enabled formaster, which
must be a window name (see ‘‘GEOMETRY PROPA GATION’’ below). If booleanhas a false
boolean value then propagation is disabled formaster. In either of these cases an empty string is
returned. Ifbooleanis omitted then the command returns0 or 1 to indicate whether propagation is
currently enabled formaster. Propagation is enabled by default.

pack slaves master
Returns a list of all of the slaves in the packing order formaster. The order of the slaves in the list
is the same as their order in the packing order. If masterhas no slaves then an empty string is
returned.

THE PACKER ALGORITHM
For each master the packer maintains an ordered list of slaves called thepacking list. The−in, −after, and
−before configuration options are used to specify the master for each slave and the slave’s position in the
packing list. If none of these options is given for a slave then the slave is added to the end of the packing
list for its parent.

The packer arranges the slaves for a master by scanning the packing list in order. At the time it processes
each slave, a rectangular area within the master is still unallocated.This area is called thecavity; for the
first slave it is the entire area of the master.

For each slave the packer carries out the following steps:

[1] The packer allocates a rectangularparcel for the slave along the side of the cavity given by the
slave’s −side option. If the side is top or bottom then the width of the parcel is the width of the
cavity and its height is the requested height of the slave plus the−ipady and−pady options. For
the left or right side the height of the parcel is the height of the cavity and the width is the
requested width of the slave plus the−ipadx and−padx options. Theparcel may be enlarged fur-
ther because of the−expandoption (see ‘‘EXPANSION’’ below)

Ck 8.0 61

pack(n) CkBuilt-In Commands pack(n)

[2] Thepacker chooses the dimensions of the slave. The width will normally be the slave’s requested
width plus twice its−ipadx option and the height will normally be the slave’s requested height
plus twice its−ipady option. However, if the−fill option isx or both then the width of the slave is
expanded to fill the width of the parcel, minus twice the−padx option. If the −fill option isy or
both then the height of the slave is expanded to fill the width of the parcel, minus twice the−pady
option.

[3] The packer positions the slave over its parcel. If the slave is smaller than the parcel then the
−anchor option determines where in the parcel the slave will be placed. If −padx or −pady is
non-zero, then the given amount of external padding will always be left between the slave and the
edges of the parcel.

Once a given slave has been packed, the area of its parcel is subtracted from the cavity, leaving a smaller
rectangular cavity for the next slave. If a slave doesn’t use all of its parcel, the unused space in the parcel
will not be used by subsequent slaves. If the cavity should become too small to meet the needs of a slave
then the slave will be given whatever space is left in the cavity. If the cavity shrinks to zero size, then all
remaining slaves on the packing list will be unmapped from the screen until the master window becomes
large enough to hold them again.

EXPANSION
If a master window is so large that there will be extra space left over after all of its slaves hav ebeen packed,
then the extra space is distributed uniformly among all of the slaves for which the−expand option is set.
Extra horizontal space is distributed among the expandable slaves whose−side is left or right , and extra
vertical space is distributed among the expandable slaves whose−side is top or bottom.

GEOMETRY PROPA GATION
The packer normally computes how large a master must be to just exactly meet the needs of its slaves, and
it sets the requested width and height of the master to these dimensions.This causes geometry information
to propagate up through a window hierarchy to a top-level window so that the entire sub-tree sizes itself to
fit the needs of the leaf windows. However, thepack propagatecommand may be used to turn off propa-
gation for one or more masters.If propagation is disabled then the packer will not set the requested width
and height of the packer. This may be useful if, for example, you wish for a master window to hav ea fixed
size that you specify.

RESTRICTIONS ON MASTER WINDO WS
The master for each slave must be the slave’s parent This restriction is necessary to guarantee that the slave
can be placed over any part of its master that is visible without danger of the slave being clipped by its par-
ent.

KEYW ORDS
geometry manager, location, packer, parcel, propagation, size

62 8.0 Ck

place(n) CkBuilt-In Commands place(n)

NAME
place − Geometry manager for fixed or rubber-sheet placement

SYNOPSIS
placewindow option value?option value ...?

place configurewindow option value?option value ...?

place forgetwindow

place info window

place slaves window

DESCRIPTION
The placer is a geometry manager for Ck.It provides simple fixed placement of windows, where you spec-
ify the exact size and location of one window, called theslave, within another window, called themaster.
The placer also provides rubber-sheet placement, where you specify the size and location of the slave in
terms of the dimensions of the master, so that the slave changes size and location in response to changes in
the size of the master. Lastly, the placer allows you to mix these styles of placement so that, for example,
the slave has a fixed width and height but is centered inside the master.

If the first argument to theplacecommand is a window path name orconfigure then the command arranges
for the placer to manage the geometry of a slave whose path name iswindow. The remaining arguments
consist of one or moreoption−valuepairs that specify the way in whichwindow’s geometry is managed.If
the placer is already managingwindow, then theoption−valuepairs modify the configuration forwindow.
In this form theplace command returns an empty string as result.The following option−valuepairs are
supported:

−x location
Locationspecifies the x-coordinate within the master window of the anchor point forwindow. The
location is specified in screen columns and need not lie within the bounds of the master window.

−relx location
Locationspecifies the x-coordinate within the master window of the anchor point forwindow. In
this case the location is specified in a relative fashion as a floating-point number:0.0 corresponds
to the left edge of the master and 1.0 corresponds to the right edge of the master. Locationneed
not be in the range 0.0−1.0.If both −x and−relx are specified for a slave then their values are
summed. For example,−relx 0.5 −x −2positions the left edge of the slave 2 columns to the left of
the center of its master.

−y location
Locationspecifies the y-coordinate within the master window of the anchor point forwindow. The
location is specified in screen lines and need not lie within the bounds of the master window.

−rely location
Locationspecifies the y-coordinate within the master window of the anchor point forwindow. In
this case the value is specified in a relative fashion as a floating-point number:0.0 corresponds to
the top edge of the master and 1.0 corresponds to the bottom edge of the master. Locationneed
not be in the range 0.0−1.0.If both −y and−rely are specified for a slave then their values are
summed. For example,−rely 0.5 −x 3positions the top edge of the slave 3 lines below the center
of its master.

Ck 8.0 63

place(n) CkBuilt-In Commands place(n)

−anchor where
Where specifies which point ofwindowis to be positioned at the (x,y) location selected by the−x,
−y, −relx, and −rely options. Theanchor point is in terms of the outer area ofwindow including
its border, if any. Thus ifwhere is sethen the lower-right corner ofwindow’s border will appear at
the given (x,y) location in the master. The anchor position defaults tonw.

−width size
Sizespecifies the width forwindow in screen columns.The width will be the outer width ofwin-
dow including its border, if any. If sizeis an empty string, or if no−width or −relwidth option is
specified, then the width requested internally by the window will be used.

−relwidth size
Sizespecifies the width forwindow. In this case the width is specified as a floating-point number
relative to the width of the master: 0.5 meanswindowwill be half as wide as the master, 1.0 means
window will have the same width as the master, and so on. If both −width and −relwidth are
specified for a slave, their values are summed.For example,−relwidth 1.0 −width 5 makes the
slave 5 columns wider than the master.

−height size
Sizespecifies the height forwindow in screen lines.The height will be the outer dimension of
window including its border, if any. If size is an empty string, or if no−height or −relheight
option is specified, then the height requested internally by the window will be used.

−relheightsize
Sizespecifies the height forwindow. In this case the height is specified as a floating-point number
relative to the height of the master: 0.5 meanswindowwill be half as high as the master, 1.0 means
windowwill have the same height as the master, and so on. If both −height and−relheight are
specified for a slave, their values are summed.For example,−relheight 1.0 −height −2makes the
slave 2 lines shorter than the master.

−bordermodemode
Modedetermines the degree to which borders within the master are used in determining the place-
ment of the slave. The default and most common value isinside. In this case the placer considers
the area of the master to be the innermost area of the master, inside any border: an option of−x 0
corresponds to an x-coordinate just inside the border and an option of−relwidth 1.0 meanswin-
dowwill fill the area inside the master’s border. If modeis ignore, borders are ignored: the area of
the master is considered to be its official area, which includes any internal border.

If the same value is specified separately with two different options, such as−x and−relx, then the most
recent option is used and the older one is ignored.

Theplace slaves command returns a list of all the slave windows for whichwindow is the master. If there
are no slaves for windowthen an empty string is returned.

Theplace forget command causes the placer to stop managing the geometry ofwindow. As a side effect of
this commandwindowwill be unmapped so that it doesn’t appear on the screen.If window isn’t currently
managed by the placer then the command has no effect. Place forget returns an empty string as result.

The place info command returns a list giving the current configuration ofwindow. The list consists of
option−valuepairs in exactly the same form as might be specified to theplace configure command. Ifthe
configuration of a window has been retrieved with place info, that configuration can be restored later by
first usingplace forget to erase any existing information for the window and then invoking place configure
with the saved information.

FINE POINTS
Unlike many other geometry managers (such as the packer) the placer does not make any attempt to manip-
ulate the geometry of the master windows or the parents of slave windows (i.e. it doesn’t set their requested
sizes). To control the sizes of these windows, make them windows like frames and canvases that provide

64 8.0 Ck

place(n) CkBuilt-In Commands place(n)

configuration options for this purpose.

The place command is the only way to position toplevel windows on the screen. In this special case, the
master of a toplevel window is assumed to be the entire screen area and the toplevel’s location and area is
computed based on the screen’s area.

KEYW ORDS
geometry manager, height, location, master, place, rubber sheet, slave, width, toplevel

Ck 8.0 65

radiobutton(n) CkBuilt-In Commands radiobutton(n)

NAME
radiobutton − Create and manipulate radiobutton widgets

SYNOPSIS
radiobutton pathName?options?

STANDARD OPTIONS
activeAttrib utes attributes disabledForeground textVariable
activeBackground background foreground underline
activeForeground disabledAttributes takeFocus underlineAttributes
anchor disabledBackground text underlineForeground

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: −command

Specifies a Tcl command to associate with the button. Thiscommand is typically invoked when
mouse button 1 is pressed in the button window. The button’s global variable (−variable option)
will be updated before the command is invoked.

Name: height
Class: Height
Command-Line Switch: −height

Specifies a desired height for the button in screen lines.If this option isn’t specified, the button’s
desired height is 1 line.

Name: selectColor
Class: Background
Command-Line Switch: −selectcolor

Specifies a background color to use when the button is selected.If indicatorOn is true, the color
applicies to the indicator.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of three states for the radiobutton: normal, active, or disabled. In normal state the
radiobutton is displayed using theattrib utes, foreground, and background options. Theactive
state is used when the input focus is in the radiobutton. Inactive state the radiobutton is displayed
using theactiveAttrib utes, activeForeground, and activeBackground options. Disabledstate
means that the radiobutton should be insensitive: the default bindings will refuse to activate the
widget and will ignore mouse button presses.In this state thedisabledAttrib utes, disabledFore-
ground anddisabledBackground options determine how the radiobutton is displayed.

Name: value
Class: Value
Command-Line Switch: −value

Specifies value to store in the button’s associated variable whenever this button is selected.

Name: variable
Class: Variable
Command-Line Switch: −variable

Specifies name of global variable to set whenever this button is selected.Changes in this variable
also cause the button to select or deselect itself. Defaults to the valueselectedButton.

66 8.0 Ck

radiobutton(n) CkBuilt-In Commands radiobutton(n)

Name: width
Class: Width
Command-Line Switch: −width

Specifies a desired width for the button in screen columns.If this option isn’t specified, the but-
ton’s desired width is computed from the size of the text being displayed in it.

DESCRIPTION
The radiobutton command creates a new window (given by the pathNameargument) and makes it into a
radiobutton widget. Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the radiobutton such as its colors, attributes, and text. Theradiobut-
ton command returns itspathNameargument. Atthe time this command is invoked, there must not exist a
window namedpathName, but pathName’s parent must exist.

A radiobutton is a widget that displays a textual string and a circle called anindicator. One of the charac-
ters of the string may optionally be underlined using theunderline, underlineAttrib utes, and underline-
Foreground options. Aradiobutton has all of the behavior of a simple button: it can display itself in either
of three different ways, according to thestateoption, and it invokes a Tcl command whenever mouse but-
ton 1 is clicked over the check button.

In addition, radiobuttons can beselected. If a radiobutton is selected, the indicator is normally drawn with
a special color, and a Tcl variable associated with the radiobutton is set to a particular value. If the
radiobutton is not selected, the indicator is drawn with no special color. Typically, sev eral radiobuttons
share a single variable and the value of the variable indicates which radiobutton is to be selected.When a
radiobutton is selected it sets the value of the variable to indicate that fact; eachradiobutton also monitors
the value of the variable and automatically selects and deselects itself when the variable’s value changes.
By default the variableselectedButtonis used; its contents give the name of the button that is selected, or
the empty string if no button associated with that variable is selected.The name of the variable for a
radiobutton, plus the variable to be stored into it, may be modified with options on the command line or in
the option database.Configuration options may also be used to modify the way the indicator is displayed.
By default a radio button is configured to select itself on button clicks.

WIDGET COMMAND
The radiobutton command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Optionand theargs determine the exact behavior of the command.The following commands are possible
for radiobutton widgets:

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by theradiobutton command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, the com-
mand returns a list describing the one named option (this list will be identical to the corresponding
sublist of the value returned if nooption is specified).If one or moreoption−valuepairs are speci-
fied, the command modifies the given widget option(s) to have the given value(s); inthis case the
command returns an empty string.Optionmay have any of the values accepted by theradiobut-
ton command.

Ck 8.0 67

radiobutton(n) CkBuilt-In Commands radiobutton(n)

pathNamedeselect
Deselects the radiobutton and sets the associated variable to an empty string.If this radiobutton
was not currently selected, the command has no effect.

pathNameinvoke
Does just what would have happened if the user invoked the radiobutton with the mouse: selects
the button and invokes its associated Tcl command, if there is one.The return value is the return
value from the Tcl command, or an empty string if there is no command associated with the
radiobutton. Thiscommand is ignored if the radiobutton’s state isdisabled.

pathNameselect
Selects the radiobutton and sets the associated variable to the value corresponding to this widget.

BINDINGS
Ck automatically creates class bindings for radiobuttons that give them the following default behavior:

[1] The radiobutton activates whenever it gets the input focus and deactivates whenever it loses the
input focus.

[2] Whenmouse button 1 is pressed over a radiobutton it is invoked (it becomes selected and the com-
mand associated with the button is invoked, if there is one).

[3] When a radiobutton has the input focus, the space or return keys cause the radiobutton to be
invoked.

If the radiobutton’s state isdisabled then none of the above actions occur: the radiobutton is completely
non-responsive.

The behavior of radiobuttons can be changed by defining new bindings for individual widgets or by redefin-
ing the class bindings.

KEYW ORDS
radiobutton, widget

68 8.0 Ck

raise(n) CkBuilt-In Commands raise(n)

NAME
raise − Change a window’s position in the stacking order

SYNOPSIS
raisewindow?aboveThis?

DESCRIPTION
If the aboveThisargument is omitted then the command raiseswindowso that it is above all of its siblings
in the stacking order (it will not be obscured by any siblings and will obscure any siblings that overlap it).
If aboveThisis specified then it must be the path name of a window that is either a sibling ofwindowor the
descendant of a sibling ofwindow. In this case theraise command will insertwindow into the stacking
order just above aboveThis(or the ancestor ofaboveThisthat is a sibling ofwindow); this could end up
either raising or loweringwindow.

KEYW ORDS
obscure, raise, stacking order

Ck 8.0 69

recorder(n) CkBuilt-In Commands recorder(n)

NAME
recorder − Simple event recorder/player

SYNOPSIS
recorder replayfileName
recorder start ?−withdelay?fileName
recorder stop

DESCRIPTION
This command provides a simple recorder/player for certain kinds of events. Therecorder start form
arranges for recording events to the event log filefileName. If the−withdelayswitch is specified, the delays
between events are also recorded.The event log file may be replayed using therecorder replay command
form. With recorder stopall recording/playing activity is stopped and all event log files are closed.

Each event takes up one line in an event log file. Event types are the first word in angle brackets in the line.
They are followed by parameters for the event:

<ButtonPress>window button x y rootX rooty
Mouse buttonbutton (1, 2, or 3) pressed in window windowat window coordinatex, y. Root coor-
dinates are inrootX, rootY.

<ButtonRelease>window button x y rootX rooty
Mouse button released, analogous to<ButtonPress>.

<Delay>milliseconds
Delay replay formilliseconds.

<Key>window keysym
Ke y pressed inwindow. Ke ysym is the symbolic name of the key, e.g. ‘‘Linefeed’’, ‘ ‘Return’’,
‘‘ Control-A’’ , or a hexadecimal key code like 0xc3. Notethat hexadecimal key codes greater than
0x7f are not portable accross different systems.

Lines starting with a hash are treated as comments. All other lines whose first word does not start with an
open angle bracket are evaluated as normal Tcl commands. As in Tcl source files, newline-backslash
sequences are treated as continuation lines.

Errors occuring during replay are reported using the background error mechanism. Upon error, the replay
ev ent log file is closed.

KEYW ORDS
ev ent, recorder

70 8.0 Ck

scrollbar(n) CkBuilt-In Commands scrollbar(n)

NAME
scrollbar − Create and manipulate scrollbar widgets

SYNOPSIS
scrollbar pathName?options?

STANDARD OPTIONS
activeAttrib utes activeForeground background orient
activeBackground attributes foreground takeFocus

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: command
Class: Command
Command-Line Switch: −command

Specifies the prefix of a Tcl command to invoke to change the view in the widget associated with
the scrollbar. When a user requests a view change by manipulating the scrollbar, a Tcl command
is invoked. Theactual command consists of this option followed by additional information as
described later.

DESCRIPTION
The scrollbar command creates a new window (given by the pathNameargument) and makes it into a
scrollbar widget.Additional options, described above, may be specified on the command line or in the
option database to configure aspects of the scrollbar such as its colors, orientation, and relief.The scroll-
bar command returns itspathNameargument. Atthe time this command is invoked, there must not exist a
window namedpathName, but pathName’s parent must exist.

A scrollbar is a widget that displays two arrows, one at each end of the scrollbar, and aslider in the middle
portion of the scrollbar. It provides information about what is visible in anassociated windowthat displays
an document of some sort (such as a file being edited).The position and size of the slider indicate which
portion of the document is visible in the associated window. For example, if the slider in a vertical scroll-
bar covers the top third of the area between the two arrows, it means that the associated window displays
the top third of its document.

Scrollbars can be used to adjust the view in the associated window by clicking or dragging with the mouse.
See the BINDINGS section below for details.

ELEMENTS
A scrollbar displays five elements, which are referred to in the widget commands for the scrollbar:

arr ow1 The top or left arrow in the scrollbar.

tr ough1 The region between the slider andarr ow1.

slider The rectangle that indicates what is visible in the associated widget.

tr ough2 The region between the slider andarr ow2.

arr ow2 The bottom or right arrow in the scrollbar.

WIDGET COMMAND
The scrollbar command creates a new Tcl command whose name ispathName. This command may be
used to invoke various operations on the widget.It has the following general form:

pathName option?arg arg ...?

Ck 8.0 71

scrollbar(n) CkBuilt-In Commands scrollbar(n)

Optionand theargs determine the exact behavior of the command.The following commands are possible
for scrollbar widgets:

pathNameactivate
Marks the scrollbar as active, which causes it to be displayed as specified by theactiveAttrib utes,
activeBackground andactiveForeground options.

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thescrollbar command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thescrollbar command.

pathNamedeactivate
Marks the scrollbar as normal, which causes it to be displayed as specified by theattrib utes,
background andforeground options.

pathNamefraction x y
Returns a real number between 0 and 1 indicating where the point given by x and y lies in the
trough area of the scrollbar. The value 0 corresponds to the top or left of the trough, the value 1
corresponds to the bottom or right, 0.5 corresponds to the middle, and so on.X and y must be
screen coordinates relative to the scrollbar widget.If x andy refer to a point outside the trough,
the closest point in the trough is used.

pathNameget
Returns the scrollbar settings in the form of a list whose elements are the arguments to the most
recentsetwidget command.

pathNameidentify x y
Returns the name of the element under the point given by x andy (such asarr ow1), or an empty
string if the point does not lie in any element of the scrollbar. X andy must be screen coordinates
relative to the scrollbar widget.

pathNamesetfirst last
This command is invoked by the scrollbar’s associated widget to tell the scrollbar about the current
view in the widget.The command takes two arguments, each of which is a real fraction between 0
and 1. The fractions describe the range of the document that is visible in the associated widget.
For example, iffirst is 0.2 andlast is 0.4, it means that the first part of the document visible in the
window is 20% of the way through the document, and the last visible part is 40% of the way
through.

SCROLLING COMMANDS
When the user interacts with the scrollbar, for example by dragging the slider, the scrollbar notifies the
associated widget that it must change its view. The scrollbar makes the notification by evaluating a Tcl
command generated from the scrollbar’s −commandoption. Thecommand may take any of the following
forms. Ineach case,prefix is the contents of the−commandoption, which usually has a form like .t yview

prefixmoveto fraction
Fr action is a real number between 0 and 1.The widget should adjust its view so that the point
given by fractionappears at the beginning of the widget.If fraction is 0 it refers to the beginning
of the document.1.0 refers to the end of the document, 0.333 refers to a point one-third of the

72 8.0 Ck

scrollbar(n) CkBuilt-In Commands scrollbar(n)

way through the document, and so on.

prefixscroll numberunit
The widget should adjust its view by numberunits. Theunits are defined in whatever way makes
sense for the widget, such as characters or lines in a text widget. Numberis either 1, which means
one unit should scroll off the top or left of the window, or −1, which means that one unit should
scroll off the bottom or right of the window.

prefixscroll numberpage
The widget should adjust its view by numberpages. Itis up to the widget to define the meaning of
a page; typicallyit is slightly less than what fits in the window, so that there is a slight overlap
between the old and new views. Numberis either 1, which means the next page should become
visible, or −1, which means that the previous page should become visible.

BINDINGS
Ck automatically creates class bindings for scrollbars that give them the following default behavior. If the
behavior is different for vertical and horizontal scrollbars, the horizontal behavior is described in parenthe-
ses.

[1] Pressingbutton 1 over arr ow1 causes the view in the associated widget to shift up (left) by one
unit so that the document appears to move down (right) one unit.

[2] Pressingbutton 1 over tr ough1 causes the view in the associated widget to shift up (left) by one
screenful so that the document appears to move down (right) one screenful.

[3] Pressingbutton 1 over tr ough2 causes the view in the associated widget to shift down (right) by
one screenful so that the document appears to move up (left) one screenful.

[4] Pressingbutton 1 over arr ow2 causes the view in the associated widget to shift down (right) by
one unit so that the document appears to move up (left) one unit.

[5] In vertical scrollbars the Up and Down keys hav ethe same behavior as mouse clicks over arr ow1
andarr ow2, respectively. In horizontal scrollbars these keys hav eno effect.

[6] In horizontal scrollbars the Left and Right keys hav e the same behavior as mouse clicks over
arr ow1 andarr ow2, respectively. In vertical scrollbars these keys hav eno effect.

[7] The Prior and Next keys hav e the same behavior as mouse clicks over tr ough1 and tr ough2,
respectively.

[8] TheHome key adjusts the view to the top (left edge) of the document.

[9] TheEnd key adjusts the view to the bottom (right edge) of the document.

[10] FocusIn and FocusOut events activate and deactive the scrollbars, respectively.

KEYW ORDS
scrollbar, widget

Ck 8.0 73

text(n) CkBuilt-In Commands text(n)

NAME
text − Create and manipulate text widgets

SYNOPSIS
text pathName?options?

STANDARD OPTIONS
attrib utes selectAttributes selectForeground xScrollCommand
background selectBackground takeFocus yScrollCommand
foreground

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: height
Class: Height
Command-Line Switch: −height

Specifies the desired height for the window, in screen lines.Must be at least one.

Name: state
Class: State
Command-Line Switch: −state

Specifies one of two states for the text: normal or disabled. If the text is disabled then characters
may not be inserted or deleted and no insertion cursor will be displayed, even if the input focus is
in the widget.

Name: tabs
Class: Tabs
Command-Line Switch: −tabs

Specifies a set of tab stops for the window. The option’s value consists of a list of screen distances
giving the positions of the tab stops.Each position may optionally be followed in the next list ele-
ment by one of the keywords left, right , center, or numeric, which specifies how to justify text
relative to the tab stop.Left is the default; it causes the text following the tab character to be posi-
tioned with its left edge at the tab position.Right means that the right edge of the text following
the tab character is positioned at the tab position, andcenter means that the text is centered at the
tab position.Numeric means that the decimal point in the text is positioned at the tab position;if
there is no decimal point then the least significant digit of the number is positioned just to the left
of the tab position;if there is no number in the text then the text is right-justified at the tab posi-
tion. For example,−tabs {2 left 4 6 center}creates three tab stops at two-column intervals; the
first two use left justification and the third uses center justification.If the list of tab stops does not
have enough elements to cover all of the tabs in a text line, then Ck extrapolates new tab stops
using the spacing and alignment from the last tab stop in the list.The value of thetabs option
may be overridden by−tabs options in tags.If no −tabs option is specified, or if it is specified as
an empty list, then Ck uses default tabs spaced every eight columns.

Name: width
Class: Width
Command-Line Switch: −width

Specifies the desired width for the window in screen columns.

Name: wrap
Class: Wrap
Command-Line Switch: −wrap

Specifies how to handle lines in the text that are too long to be displayed in a single line of the
text’s window. The value must benoneor char or word . A wrap mode ofnonemeans that each

74 8.0 Ck

text(n) CkBuilt-In Commands text(n)

line of text appears as exactly one line on the screen;extra characters that don’t fit on the screen
are not displayed.In the other modes each line of text will be broken up into several screen lines
if necessary to keep all the characters visible.In char mode a screen line break may occur after
any character; inword mode a line break will only be made at word boundaries.

DESCRIPTION
The text command creates a new window (given by thepathNameargument) and makes it into a text wid-
get. Additionaloptions, described above, may be specified on the command line or in the option database
to configure aspects of the text such as its colors and attributes. Thetext command returns the path name
of the new window.

A text widget displays one or more lines of text and allows that text to be edited.Te xt widgets support two
different kinds of annotations on the text, called tags and marks.Tags allow different portions of the text to
be displayed with different attributes and colors.See TAGS below for more details.

The second form of annotation consists of marks, which are floating markers in the text. Marksare used to
keep track of various interesting positions in the text as it is edited.See MARKS below for more details.

INDICES
Many of the widget commands for texts take one or more indices as arguments. Anindex is a string used to
indicate a particular place within a text, such as a place to insert characters or one endpoint of a range of
characters to delete.Indices have the syntax

base modifier modifier modifier ...

Wherebasegives a starting point and themodifiers adjust the index from the starting point (e.g. move for-
ward or backward one character).Every index must contain abase, but themodifiers are optional.

Thebasefor an index must have one of the following forms:

line.char Indicateschar’th character on lineline. Lines are numbered from 1 for consistency with
other UNIX programs that use this numbering scheme.Within a line, characters are num-
bered from 0.

@x,y Indicates the character that covers the place whose x and y coordinates within the text’s win-
dow arex andy.

end Indicates the end of the text (the character just after the last newline).

mark Indicates the character just after the mark whose name ismark.

tag.first Indicates the first character in the text that has been tagged withtag. This form generates an
error if no characters are currently tagged withtag.

tag.last Indicates the character just after the last one in the text that has been tagged withtag. This
form generates an error if no characters are currently tagged withtag.

If modifiers follow the base index, each one of them must have one of the forms listed below. Keywords
such ascharsandwordend may be abbreviated as long as the abbreviation is unambiguous.

+ countchars
Adjust the index forward bycountcharacters, moving to later lines in the text if necessary. If there
are fewer thancount characters in the text after the current index, then set the index to the last
character in the text. Spaceson either side ofcountare optional.

− countchars
Adjust the index backward bycountcharacters, moving to earlier lines in the text if necessary. If
there are fewer thancountcharacters in the text before the current index, then set the index to the
first character in the text. Spaceson either side ofcountare optional.

Ck 8.0 75

text(n) CkBuilt-In Commands text(n)

+ countlines
Adjust the index forward bycount lines, retaining the same character position within the line.If
there are fewer thancount lines after the line containing the current index, then set the index to
refer to the same character position on the last line of the text. Then,if the line is not long enough
to contain a character at the indicated character position, adjust the character position to refer to
the last character of the line (the newline). Spaceson either side ofcountare optional.

− countlines
Adjust the index backward bycountlines, retaining the same character position within the line.If
there are fewer thancount lines before the line containing the current index, then set the index to
refer to the same character position on the first line of the text. Then,if the line is not long enough
to contain a character at the indicated character position, adjust the character position to refer to
the last character of the line (the newline). Spaceson either side ofcountare optional.

linestart
Adjust the index to refer to the first character on the line.

lineend
Adjust the index to refer to the last character on the line (the newline).

wordstart
Adjust the index to refer to the first character of the word containing the current index. A word
consists of any number of adjacent characters that are letters, digits, or underscores, or a single
character that is not one of these.

wordend
Adjust the index to refer to the character just after the last one of the word containing the current
index. If the current index refers to the last character of the text then it is not modified.

If more than one modifier is present then they are applied in left-to-right order. For example, the index
‘‘ end − 1 chars’’ r efers to the next-to-last character in the text and ‘‘ insert wordstart − 1 c’’ r efers to the
character just before the first one in the word containing the insertion cursor.

TA GS
The first form of annotation in text widgets is a tag.A tag is a textual string that is associated with some of
the characters in a text. Tags may contain arbitrary characters, but it is probably best to avoid using the the
characters ‘‘ ’ ’ (space),+, or −: these characters have special meaning in indices, so tags containing them
can’t be used as indices.There may be any number of tags associated with characters in a text. Eachtag
may refer to a single character, a range of characters, or several ranges of characters.An individual charac-
ter may have any number of tags associated with it.

A priority order is defined among tags, and this order is used in implementing some of the tag-related func-
tions described below. When a tag is defined (by associating it with characters or setting its display options
to it), it is given a priority higher than any existing tag. The priority order of tags may be redefined using
the ‘‘pathNametag raise’’ and ‘‘pathNametag lower’’ w idget commands.

Tags serve two purposes in text widgets. First, they control the way information is displayed on the screen.
By default, characters are displayed as determined by thebackground, attrib utes, and foreground options
for the text widget. However, display options may be associated with individual tags using the ‘‘pathName
tag configure’’ w idget command.If a character has been tagged, then the display options associated with
the tag override the default display style.The following options are currently supported for tags:

−attrib utesattrList
AttrList specifies the attributes to use for characters associated with the tag.

−background color
Color specifies the background color to use for characters associated with the tag.

76 8.0 Ck

text(n) CkBuilt-In Commands text(n)

−foreground color
Color specifies the color to use when drawing text and other foreground information such as
underlines. Itmay have any of the forms accepted byTk_GetColor.

−justify justify
If the first character of a display line has a tag for which this option has been specified, thenjustify
determines how to justify the line. It must be one ofleft, right , or center. If a line wraps, then
the justification for each line on the display is determined by the first character of that display line.

−lmargin1 columns
If the first character of a text line has a tag for which this option has been specified, thencolumns
specifies how much the line should be indented from the left edge of the window. If a line of text
wraps, this option only applies to the first line on the display;the −lmargin2 option controls the
indentation for subsequent lines.

−lmargin2 columns
If the first character of a display line has a tag for which this option has been specified, and if the
display line is not the first for its text line (i.e., the text line has wrapped), thencolumnsspecifies
how much the line should be indented from the left edge of the window. This option is only used
when wrapping is enabled, and it only applies to the second and later display lines for a text line.

−rmar gin columns
If the first character of a display line has a tag for which this option has been specified, then
columnsspecifies how wide a margin to leave between the end of the line and the right edge of the
window. This option is only used when wrapping is enabled.If a text line wraps, the right margin
for each line on the display is determined by the first character of that display line.

−tabs tabList
TabList specifies a set of tab stops in the same form as for the−tabs option for the text widget.
This option only applies to a display line if it applies to the first character on that display line.If
this option is specified as an empty string, it cancels the option, leaving it unspecified for the tag
(the default). If the option is specified as a non-empty string that is an empty list, such as
−tags { }, then it requests default 8-character tabs as described for thetagswidget option.

−wrap mode
Modespecifies how to handle lines that are wider than the text’s window. It has the same legal
values as the−wrap option for the text widget: none, char, or word . If this tag option is speci-
fied, it overrides the−wrap option for the text widget.

If a character has several tags associated with it, and if their display options conflict, then the options of the
highest priority tag are used.If a particular display option hasn’t been specified for a particular tag, or if it
is specified as an empty string, then that option will never be used; thenext-highest-priority tag’s option
will used instead.If no tag specifies a particular display option, then the default style for the widget will be
used.

The second use for tags is in managing the selection.See THE SELECTION below.

MARKS
The second form of annotation in text widgets is a mark.Marks are used for remembering particular places
in a text. They are something like tags, in that they hav enames and they refer to places in the file, but a
mark isn’t associated with particular characters.Instead, a mark is associated with the gap between two
characters. Onlya single position may be associated with a mark at any giv en time. If the characters
around a mark are deleted the mark will still remain;it will just have new neighbor characters.In contrast,
if the characters containing a tag are deleted then the tag will no longer have an association with characters
in the file. Marks may be manipulated with the ‘‘pathNamemark ’’ w idget command, and their current
locations may be determined by using the mark name as an index in widget commands.

Each mark also has agravity, which is eitherleft or right . The gravity for a mark specifies what happens

Ck 8.0 77

text(n) CkBuilt-In Commands text(n)

to the mark when text is inserted at the point of the mark.If a mark has left gravity, then the mark is treated
as if it were attached to the character on its left, so the mark will remain to the left of any text inserted at the
mark position. If the mark has right gravity, new text inserted at the mark position will appear to the right
of the mark.The gravity for a mark defaults toright .

The name space for marks is different from that for tags:the same name may be used for both a mark and a
tag, but they will refer to different things.

Tw o marks have special significance.First, the markinsert is associated with the insertion cursor, as
described under THE INSERTION CURSOR below. Second, the markcurr ent is associated with the char-
acter closest to the mouse and is adjusted automatically to track the mouse position and any changes to the
text in the widget (one exception: curr ent is not updated in response to mouse motions if a mouse button
is down; theupdate will be deferred until all mouse buttons have been released).Neither of these special
marks may be deleted.

THE SELECTION
Selection support is implemented via tags.The sel tag is automatically defined when a text widget is cre-
ated, and it may not be deleted with the ‘‘pathNametag delete’’ w idget command.Furthermore, theselect-
Background, selectAttributes, and selectForeground options for the text widget are tied to the−back-
ground, −attrib utes, and −foreground options for thesel tag: changesin either will automatically be
reflected in the other.

THE INSERTION CURSOR
The mark namedinsert has special significance in text widgets. It is defined automatically when a text
widget is created and it may not be unset with the ‘‘pathNamemark unset’’ w idget command.The insert
mark represents the position of the insertion cursor, and the insertion cursor will automatically be moved to
this point whenever the text widget has the input focus.

WIDGET COMMAND
The text command creates a new Tcl command whose name is the same as the path name of the text’s win-
dow. This command may be used to invoke various operations on the widget.It has the following general
form:

pathName option?arg arg ...?

PathNameis the name of the command, which is the same as the text widget’s path name.Optionand the
args determine the exact behavior of the command.The following commands are possible for text widgets:

pathNamebbox index
Returns a list of four elements describing the screen area of the character given by index. The first
two elements of the list give the x and y coordinates of the upper-left corner of the area occupied
by the character, and the last two elements give the width and height of the area.If the character is
not visible on the screen then the return value is an empty list.

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thetext command.

pathNamecompare index1 op index2
Compares the indices given by index1 andindex2 according to the relational operator given by op,
and returns 1 if the relationship is satisfied and 0 if it isn’t. Op must be one of the operators <, <=,
==, >=, >, or !=. If op is == then 1 is returned if the two indices refer to the same character, if op
is < then 1 is returned ifindex1 refers to an earlier character in the text thanindex2, and so on.

78 8.0 Ck

text(n) CkBuilt-In Commands text(n)

pathNameconfigure?option??value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thetext command.

pathNamedebug ?boolean?
If booleanis specified, then it must have one of the true or false values accepted by Tcl_Get-
Boolean. Ifthe value is a true one then internal consistency checks will be turned on in the B-tree
code associated with text widgets. If booleanhas a false value then the debugging checks will be
turned off. In either case the command returns an empty string.If booleanis not specified then
the command returnson or off to indicate whether or not debugging is turned on.There is a single
debugging switch shared by all text widgets: turning debugging on or off in any widget turns it on
or off for all widgets.For widgets with large amounts of text, the consistency checks may cause a
noticeable slow-down.

pathNamedeleteindex1?index2?
Delete a range of characters from the text. If both index1 and index2 are specified, then delete all
the characters starting with the one given by index1 and stopping just beforeindex2 (i.e. the char-
acter atindex2 is not deleted).If index2 doesn’t specify a position later in the text than index1
then no characters are deleted.If index2 isn’t specified then the single character atindex1 is
deleted. Itis not allowable to delete characters in a way that would leave the text without a new-
line as the last character. The command returns an empty string.

pathNamedlineinfo index
Returns a list with five elements describing the area occupied by the display line containingindex.
The first two elements of the list give the x and y coordinates of the upper-left corner of the area
occupied by the line, the third and fourth elements give the width and height of the area, and the
fifth element gives the position of the baseline for the line (always zero).All of this information is
measured in screen coordinates.If the current wrap mode isnoneand the line extends beyond the
boundaries of the window, the area returned reflects the entire area of the line, including the por-
tions that are out of the window. If the line is shorter than the full width of the window then the
area returned reflects just the portion of the line that is occupied by characters.If the display line
containingindex is not visible on the screen then the return value is an empty list.

pathNameget index1?index2?
Return a range of characters from the text. Thereturn value will be all the characters in the text
starting with the one whose index is index1 and ending just before the one whose index is index2
(the character atindex2 will not be returned).If index2 is omitted then the single character at
index1 is returned.If there are no characters in the specified range (e.g.index1 is past the end of
the file orindex2 is less than or equal toindex1) then an empty string is returned.

pathNameindex index
Returns the position corresponding toindex in the formline.char whereline is the line number and
char is the character number. Index may have any of the forms described under INDICES above.

pathNameinsert index chars ?tagList chars tagList ...?
Inserts all of thechars arguments just before the character atindex. If index refers to the end of
the text (the character after the last newline) then the new text is inserted just before the last new-
line instead.If there is a singlechars argument and notagList, then the new text will receive any
tags that are present on both the character before and the character after the insertion point; if a tag
is present on only one of these characters then it will not be applied to the new text. If tagList is
specified then it consists of a list of tag names;the new characters will receive all of the tags in

Ck 8.0 79

text(n) CkBuilt-In Commands text(n)

this list and no others, regardless of the tags present around the insertion point.If multiple
chars−tagList argument pairs are present, they produce the same effect as if a separateinsert wid-
get command had been issued for each pair, in order. The lasttagListargument may be omitted.

pathNamemark option?arg arg ...?
This command is used to manipulate marks.The exact behavior of the command depends on the
option argument that follows themark argument. Thefollowing forms of the command are cur-
rently supported:

pathNamemark gravity markName?direction?
If direction is not specified, returnsleft or right to indicate which of its adjacent charac-
tersmarkNameis attached to.If directionis specified, it must beleft or right ; the gravity
of markNameis set to the given value.

pathNamemark names
Returns a list whose elements are the names of all the marks that are currently set.

pathNamemark set markName index
Sets the mark namedmarkNameto a position just before the character atindex. If mark-
Namealready exists, it is moved from its old position; if it doesn’t exist, a new mark is
created. Thiscommand returns an empty string.

pathNamemark unset markName?markName markName ...?
Remove the mark corresponding to each of themarkNamearguments. Theremoved
marks will not be usable in indices and will not be returned by future calls to ‘‘pathName
mark names’’ . This command returns an empty string.

pathNamesearch ?switches?pattern index ?stopIndex?
Searches the text in pathNamestarting atindex for a range of characters that matchespattern. If a
match is found, the index of the first character in the match is returned as result;otherwise an
empty string is returned.One or more of the following switches (or abbreviations thereof) may be
specified to control the search:

−forwards
The search will proceed forward through the text, finding the first matching range starting
at a position later thanindex. This is the default.

−backwards
The search will proceed backward through the text, finding the matching range closest to
index whose first character is beforeindex.

−exact Use exact matching:the characters in the matching range must be identical to those in
pattern. This is the default.

−regexp
Treatpatternas a regular expression and match it against the text using the rules for regu-
lar expressions (see theregexpcommand for details).

−nocase
Ignore case differences between the pattern and the text.

−count varName
The argument following −count gives the name of a variable; if a match is found, the
number of characters in the matching range will be stored in the variable.

−− This switch has no effect except to terminate the list of switches: the next argument will
be treated aspatternev en if i t starts with−.

The matching range must be entirely within a single line of text. For regular expression matching
the newlines are removed from the ends of the lines before matching:use the$ feature in regular
expressions to match the end of a line.For exact matching the newlines are retained.If stopIndex

80 8.0 Ck

text(n) CkBuilt-In Commands text(n)

is specified, the search stops at that index: for forward searches, no match at or afterstopIndex will
be considered;for backward searches, no match earlier in the text thanstopIndex will be consid-
ered. IfstopIndex is omitted, the entire text will be searched: when the beginning or end of the
text is reached, the search continues at the other end until the starting location is reached again; if
stopIndex is specified, no wrap-around will occur.

pathNameseeindex
Adjusts the view in the window so that the character given by index is visible. If index is already
visible then the command does nothing.If index is a short distance out of view, the command
adjusts the view just enough to make index visible at the edge of the window. If index is far out of
view, then the command centersindex in the window.

pathNametag option?arg arg ...?
This command is used to manipulate tags.The exact behavior of the command depends on the
option argument that follows thetag argument. Thefollowing forms of the command are cur-
rently supported:

pathNametag add tagName index1?index2 index1 index2 ...?
Associate the tagtagNamewith all of the characters starting withindex1 and ending just
beforeindex2 (the character atindex2 isn’t tagged). Asingle command may contain any
number ofindex1−index2 pairs. If the lastindex2 is omitted then the single character at
index1 is tagged.If there are no characters in the specified range (e.g.index1 is past the
end of the file orindex2 is less than or equal toindex1) then the command has no effect.

pathNametag cgettagName option
This command returns the current value of the option namedoption associated with the
tag given by tagName. Optionmay have any of the values accepted by thetag configure
widget command.

pathNametag configure tagName?option? ?value? ?option value ...?
This command is similar to theconfigure widget command except that it modifies
options associated with the tag given by tagNameinstead of modifying options for the
overall text widget. If no option is specified, the command returns a list describing all of
the available options fortagName. If option is specified with novalue, then the com-
mand returns a list describing the one named option (this list will be identical to the cor-
responding sublist of the value returned if nooption is specified). If one or more
option−valuepairs are specified, then the command modifies the given option(s) to have
the given value(s) intagName; in this case the command returns an empty string.See
TA GS above for details on the options available for tags.

pathNametag deletetagName?tagName ...?
Deletes all tag information for each of thetagNamearguments. Thecommand removes
the tags from all characters in the file and also deletes any other information associated
with the tags, such as bindings and display information.The command returns an empty
string.

pathNametag lower tagName?belowThis?
Changes the priority of tagtagNameso that it is just lower in priority than the tag whose
name isbelowThis. If belowThisis omitted, thentagName’s priority is changed to make
it lowest priority of all tags.

pathNametag names?index?
Returns a list whose elements are the names of all the tags that are active at the character
position given by index. If index is omitted, then the return value will describe all of the
tags that exist for the text (this includes all tags that have been named in a ‘‘pathName
tag’’ w idget command but haven’t been deleted by a ‘‘pathNametag delete’’ w idget
command, even if no characters are currently marked with the tag).The list will be

Ck 8.0 81

text(n) CkBuilt-In Commands text(n)

sorted in order from lowest priority to highest priority.

pathNametag nextrangetagName index1?index2?
This command searches the text for a range of characters tagged withtagNamewhere the
first character of the range is no earlier than the character atindex1 and no later than the
character just beforeindex2 (a range starting atindex2 will not be considered).If several
matching ranges exist, the first one is chosen.The command’s return value is a list con-
taining two elements, which are the index of the first character of the range and the index
of the character just after the last one in the range.If no matching range is found then the
return value is an empty string.If index2 is not given then it defaults to the end of the
text.

pathNametag raisetagName?aboveThis?
Changes the priority of tagtagNameso that it is just higher in priority than the tag whose
name isaboveThis. If aboveThisis omitted, thentagName’s priority is changed to make
it highest priority of all tags.

pathNametag rangestagName
Returns a list describing all of the ranges of text that have been tagged withtagName.
The first two elements of the list describe the first tagged range in the text, the next two
elements describe the second range, and so on.The first element of each pair contains the
index of the first character of the range, and the second element of the pair contains the
index of the character just after the last one in the range.If there are no characters tagged
with tag then an empty string is returned.

pathNametag remove tagName index1?index2 index1 index2 ...?
Remove the tagtagNamefrom all of the characters starting atindex1 and ending just
beforeindex2 (the character atindex2 isn’t affected). Asingle command may contain any
number ofindex1−index2 pairs. If the lastindex2 is omitted then the single character at
index1 is tagged.If there are no characters in the specified range (e.g.index1 is past the
end of the file orindex2 is less than or equal toindex1) then the command has no effect.
This command returns an empty string.

pathNamexview option args
This command is used to query and change the horizontal position of the text in the widget’s win-
dow. It can take any of the following forms:

pathNamexview
Returns a list containing two elements. Eachelement is a real fraction between 0 and 1;
together they describe the portion of the document’s horizontal span that is visible in the
window. For example, if the first element is .2 and the second element is .6, 20% of the
text is off-screen to the left, the middle 40% is visible in the window, and 40% of the text
is off-screen to the right.The fractions refer only to the lines that are actually visible in
the window: if the lines in the window are all very short, so that they are entirely visible,
the returned fractions will be 0 and 1, even if there are other lines in the text that are
much wider than the window. These are the same values passed to scrollbars via the
−xscrollcommandoption.

pathNamexview moveto fraction
Adjusts the view in the window so that fraction of the horizontal span of the text is off-
screen to the left.Fr action is a fraction between 0 and 1.

pathNamexview scroll number what
This command shifts the view in the window left or right according tonumberandwhat.
Numbermust be an integer. Whatmust be eitherunits or pagesor an abbreviation of one
of these.If what is units, the view adjusts left or right bynumberav erage-width charac-
ters on the display;if it is pagesthen the view adjusts bynumberscreenfuls. Ifnumber

82 8.0 Ck

text(n) CkBuilt-In Commands text(n)

is negative then characters farther to the left become visible;if it is positive then charac-
ters farther to the right become visible.

pathNameyview ?args?
This command is used to query and change the vertical position of the text in the widget’s window.
It can take any of the following forms:

pathNameyview
Returns a list containing two elements, both of which are real fractions between 0 and 1.
The first element gives the position of the first character in the top line in the window, rel-
ative to the text as a whole (0.5 means it is halfway through the text, for example). The
second element gives the position of the character just after the last one in the bottom line
of the window, relative to the text as a whole.These are the same values passed to scroll-
bars via the−yscrollcommandoption.

pathNameyview moveto fraction
Adjusts the view in the window so that the character given by fractionappears on the top
line of the window. Fr action is a fraction between 0 and 1;0 indicates the first character
in the text, 0.33 indicates the character one-third the way through the text, and so on.

pathNameyview scroll number what
This command adjust the view in the window up or down according tonumberandwhat.
Numbermust be an integer. Whatmust be eitherunits or pages. If what is units, the
view adjusts up or down by numberlines on the display;if it is pagesthen the view
adjusts bynumberscreenfuls. Ifnumber is negative then earlier positions in the text
become visible;if it is positive then later positions in the text become visible.

pathNameyview ?−pickplace? index
Changes the view in the widget’s window to make index visible. If the−pickplaceoption
isn’t specified thenindex will appear at the top of the window. If −pickplace is specified
then the widget chooses whereindex appears in the window:

[1] If index is already visible somewhere in the window then the command does
nothing.

[2] If index is only a few lines off-screen above the window then it will be posi-
tioned at the top of the window.

[3] If index is only a few lines off-screen below the window then it will be posi-
tioned at the bottom of the window.

[4] Otherwise,index will be centered in the window.

The−pickplace option has been obsoleted by theseewidget command (seehandles both
x- and y-motion to make a location visible, whereas−pickplace only handles motion in
y).

pathNameyview number
This command makes the first character on the line after the one given by numbervisible
at the top of the window. Numbermust be an integer. This command used to be used for
scrolling, but now it is obsolete.

BINDINGS
Ck automatically creates class bindings for texts that give them the following default behavior. In the
descriptions below, ‘‘word’’ refers to a contiguous group of letters, digits, or ‘‘_’ ’ characters, or any single
character other than these.

[1] Clicking mouse button 1 positions the insertion cursor just before the character underneath the
mouse cursor, sets the input focus to this widget, and clears any selection in the widget.

Ck 8.0 83

text(n) CkBuilt-In Commands text(n)

[2] If any normal printing characters are typed, they are inserted at the point of the insertion cursor.

[3] TheLeft and Right keys move the insertion cursor one character to the left or right;they also clear
any selection in the text. Control-band Control-f behave the same as Left and Right, respectively.

[4] The Up and Down keys move the insertion cursor one line up or down and clear any selection in
the text. Control-pand Control-n behave the same as Up and Down, respectively.

[5] The Next and Prior keys move the insertion cursor forward or backwards by one screenful and
clear any selection in the text. Control-vmoves the view down one screenful without moving the
insertion cursor or adjusting the selection.

[6] Homeand Control-a move the insertion cursor to the beginning of its line and clear any selection
in the widget.

[7] End and Control-e move the insertion cursor to the end of the line and clear any selection in the
widget.

[8] TheDelete key deletes the selection, if there is one in the widget.If there is no selection, it deletes
the character to the right of the insertion cursor.

[9] Backspaceand Control-h delete the selection, if there is one in the widget.If there is no selection,
they delete the character to the left of the insertion cursor.

[10] Control-ddeletes the character to the right of the insertion cursor.

[11] Control-kdeletes from the insertion cursor to the end of its line; if the insertion cursor is already at
the end of a line, then Control-k deletes the newline character.

[12] Control-oopens a new line by inserting a newline character in front of the insertion cursor without
moving the insertion cursor.

[13] Control-xmoves the input focus to the next widget in focus order.

[14] Control-treverses the order of the two characters to the right of the insertion cursor.

If the widget is disabled using the−state option, then its view can still be adjusted and text can still be
selected, but no insertion cursor will be displayed and no text modifications will take place.

The behavior of texts can be changed by defining new bindings for individual widgets or by redefining the
class bindings.

PERFORMANCE ISSUES
Te xt widgets should run efficiently under a variety of conditions.The text widget uses about 2-3 bytes of
main memory for each byte of text, so texts containing a megabyte or more should be practical on most
workstations. Text is represented internally with a modified B-tree structure that makes operations rela-
tively efficient even with large texts. Tags are included in the B-tree structure in a way that allows tags to
span large ranges or have many disjoint smaller ranges without loss of efficiency. Marks are also imple-
mented in a way that allows large numbers of marks.The only known mode of operation where a text wid-
get may not run efficiently is if it has a very large number of different tags.Hundreds of tags should be
fine, or even a thousand, but tens of thousands of tags will make texts consume a lot of memory and run
slowly.

KEYW ORDS
text, widget

84 8.0 Ck

tkerror(n) CkBuilt-In Commands tkerror(n)

NAME
tkerror − Command invoked to process background errors

SYNOPSIS
tkerror message

DESCRIPTION
The tkerror command doesn’t exist as built-in part of Ck. Instead, individual applications or users can
define atkerror command (e.g. as a Tcl procedure) if they wish to handle background errors.

A background error is one that occurs in a command that didn’t originate with the application.For exam-
ple, if an error occurs while executing a command specified with abind or after command, then it is a
background error. For a non-background error, the error can simply be returned up through nested Tcl
command evaluations until it reaches the top-level code in the application; then the application can report
the error in whatever way it wishes.When a background error occurs, the unwinding ends in the Ck library
and there is no obvious way for Ck to report the error.

When Ck detects a background error, it sav es information about the error and invokes the tkerror com-
mand later when Ck is idle.Before invoking tkerror, Ck restores theerrorInf o anderrorCode variables
to their values at the time the error occurred, then it invokes tkerror with the error message as its only
argument. Ckassumes that the application has implemented thetkerror command, and that the command
will report the error in a way that makes sense for the application.Ck will ignore any result returned by the
tkerror command.

If another Tcl error occurs within thetkerror command (for example, because notkerror command has
been defined) then Ck reports the error itself by writing a message to stderr.

If several background errors accumulate beforetkerror is invoked to process them,tkerror will be invoked
once for each error, in the order they occurred. However, if tkerror returns with a break exception, then
any remaining errors are skipped without callingtkerror.

The Ck script library includes a default tkerror procedure that posts a dialog box containing the error mes-
sage and offers the user a chance to see a stack trace showing where the error occurred.

KEYW ORDS
background error, reporting

Ck 8.0 85

tkwait(n) CkBuilt-In Commands tkwait(n)

NAME
tkwait − Wait for variable to change or window to be destroyed

SYNOPSIS
tkwait variable name
tkwait visibility name
tkwait window name

DESCRIPTION
The tkwait command waits for one of several things to happen, then it returns without taking any other
actions. Thereturn value is always an empty string.If the first argument isvariable (or any abbreviation
of it) then the second argument is the name of a global variable and the command waits for that variable to
be modified. If the first argument isvisibility (or any abbreviation of it) then the second argument is the
name of a window and thetkwait command waits for a change in its visibility state. This form is typically
used to wait for a newly-created window to appear on the screen before taking some action.At the time of
this writing, visibility state changes are unreliable.Thus this form of thetkwait command is strongly dis-
couraged. Ifthe first argument iswindow (or any abbreviation of it) then the second argument is the name
of a window and thetkwait command waits for that window to be destroyed. Thisform is typically used to
wait for a user to finish interacting with a dialog box before using the result of that interaction.

While thetkwait command is waiting it processes events in the normal fashion, so the application will con-
tinue to respond to user interactions.

KEYW ORDS
variable, visibility, wait, window

86 8.0 Ck

toplevel(n) Ck Built-In Commands toplevel(n)

NAME
toplevel − Create and manipulate toplevel widgets

SYNOPSIS
toplevel pathName?options?

STANDARD OPTIONS
attrib utes border foreground takefocus
background

See the ‘‘options’’ manual entry for details on the standard options.

WIDGET-SPECIFIC OPTIONS
Name: class
Class: Class
Command-Line Switch: −class

Specifies a class for the window. This class will be used when querying the option database for
the window’s other options, and it will also be used later for other purposes such as bindings.The
classoption may not be changed with theconfigurewidget command.

Name: height
Class: Height
Command-Line Switch: −height

Specifies the desired height for the window in screen lines.If this option is equal to zero then the
window will not request any size at all.

Name: width
Class: Width
Command-Line Switch: −width

Specifies the desired width for the window in screen columns.If this option is equal to zero then
the window will not request any size at all.

DESCRIPTION
The toplevel command creates a new toplevel widget (given by the pathNameargument). Additional
options, described above, may be specified on the command line or in the option database to configure
aspects of the toplevel such as its background color and relief.The toplevel command returns the path
name of the new window.

A toplevel is similar to a frame except that it is created as a top-level window: its parent with respect to
screen real estate is the terminal’s screen rather than the logical parent from its path name.The primary
purpose of a toplevel is to serve as a container for dialog boxes and other collections of widgets.The only
visible features of a toplevel are its background color, attributes and border.

WIDGET COMMAND
The toplevel command creates a new Tcl command whose name is the same as the path name of the
toplevel’s window. This command may be used to invoke various operations on the widget.It has the fol-
lowing general form:

pathName option?arg arg ...?

PathNameis the name of the command, which is the same as the toplevel widget’s path name.Optionand
theargs determine the exact behavior of the command.The following commands are possible for toplevel
widgets:

Ck 8.0 87

toplevel(n) Ck Built-In Commands toplevel(n)

pathNamecgetoption
Returns the current value of the configuration option given by option. Optionmay have any of the
values accepted by thetoplevel command.

pathNameconfigure?option? ?value option value ...?
Query or modify the configuration options of the widget.If no option is specified, returns a list
describing all of the available options forpathName. If option is specified with novalue, then the
command returns a list describing the one named option (this list will be identical to the corre-
sponding sublist of the value returned if nooption is specified).If one or moreoption−valuepairs
are specified, then the command modifies the given widget option(s) to have the given value(s); in
this case the command returns an empty string.Option may have any of the values accepted by
thetoplevel command.

PLACEMENT
The only means to place a toplevel widget on the screen is theplacegeometry manager.

BINDINGS
When a new toplevel is created, it has no default event bindings: toplevels are not intended to be interactive.

KEYW ORDS
toplevel, widget, place

88 8.0 Ck

update(n) CkBuilt-In Commands update(n)

NAME
update − Process pending events and/or when-idle handlers

SYNOPSIS
update?idletasks|screen?

DESCRIPTION
This command is used to bring the entire application world ‘‘up to date.’’ I t flushes all pending output to
the display, waits for the server to process that output and return errors or events, handles all pending
ev ents of any sort (including when-idle handlers), and repeats this set of operations until there are no pend-
ing events, no pending when-idle handlers, no pending output to the server, and no operations still outstand-
ing at the server.

If the idletaskskeyword is specified as an argument to the command, then no new events or errors are pro-
cessed; onlywhen-idle idlers are invoked. Thiscauses operations that are normally deferred, such as dis-
play updates and window layout calculations, to be performed immediately.

Theupdate idletaskscommand is useful in scripts where changes have been made to the application’s state
and you want those changes to appear on the display immediately, rather than waiting for the script to com-
plete. Mostdisplay updates are performed as idle handlers, soupdate idletaskswill cause them to run.
However, there are some kinds of updates that only happen in response to events, such as those triggered by
window size changes; these updates will not occur inupdate idletasks.

If the screenkeyword is specified as an argument to the command, then the entire screen is repainted from
scratch without handling any other events. This is useful if the terminal’s screen has been garbled by
another process.

Theupdate command with no options is useful in scripts where you are performing a long-running compu-
tation but you still want the application to respond to user interactions;if you occasionally callupdate then
user input will be processed during the next call toupdate.

KEYW ORDS
ev ent, flush, handler, idle, update

Ck 8.0 89

winfo(n) CkBuilt-In Commands winfo(n)

NAME
winfo − Return window-related information

SYNOPSIS
winfo option?arg arg ...?

DESCRIPTION
The winfo command is used to retrieve information about windows managed by Ck.It can take any of a
number of different forms, depending on theoptionargument. Thelegal forms are:

winfo childr enwindow
Returns a list containing the path names of all the children ofwindow. Top-level windows are
returned as children of their logical parents.

winfo classwindow
Returns the class name forwindow.

winfo containing rootX rootY
Returns the path name for the window containing the point given by rootX androotY. RootXand
rootY are specified as cursor position in the coordinate system of the terminal.If no window in
this application contains the point then an empty string is returned.In selecting the containing
window, children are given higher priority than parents and among siblings the highest one in the
stacking order is chosen.

winfo depth window
Returns a decimal string giving the depth ofwindow. 1 means the terminal’s screen is
monochrome. Any number higher than 1 means that the terminal supports colors.

winfo exists window
Returns 1 if there exists a window namedwindow, 0 if no such window exists.

winfo geometrywindow
Returns the geometry forwindow, in the formwidthxheight+x+y. All dimensions are in terminal
coordinates.

winfo height window
Returns a decimal string giving window’s height in terminal lines.When a window is first created
its height will be 1; the height will eventually be changed by a geometry manager to fulfill the
window’s needs. Ifyou need the true height immediately after creating a widget, invoke update to
force the geometry manager to arrange it, or usewinfo reqheight to get the window’s requested
height instead of its actual height.

winfo ismappedwindow
Returns1 if windowis currently mapped,0 otherwise.

winfo managerwindow
Returns the name of the geometry manager currently responsible forwindow, or an empty string if
window isn’t managed by any geometry manager. The name is usually the name of the Tcl com-
mand for the geometry manager, such aspack or place.

winfo namewindow
Returnswindow’s name (i.e. its name within its parent, as opposed to its full path name).The
commandwinfo name .will return the name of the application.

winfo parent window
Returns the path name ofwindow’s parent, or an empty string ifwindowis the main window of the
application.

90 8.0 Ck

winfo(n) CkBuilt-In Commands winfo(n)

winfo reqheightwindow
Returns a decimal string giving window’s requested height, in lines.This is the value used bywin-
dow’s geometry manager to compute its geometry.

winfo reqwidth window
Returns a decimal string giving window’s requested width, in columns.This is the value used by
window’s geometry manager to compute its geometry.

winfo rootx window
Returns a decimal string giving the x-coordinate, in the root window of the screen, of the upper-
left corner ofwindow’s border (orwindowif it has no border).

winfo rooty window
Returns a decimal string giving the y-coordinate, in the root window of the screen, of the upper-
left corner ofwindow’s border (orwindowif it has no border).

winfo screenheightwindow
Returns a decimal string giving the height ofwindow’s terminal screen, in lines.

winfo screenwidthwindow
Returns a decimal string giving the width ofwindow’s terminal screen, in columns.

winfo toplevel window
Returns the path name of the top-level window containingwindow.

winfo width window
Returns a decimal string giving window’s width in columns.When a window is first created its
width will be 1; the width will eventually be changed by a geometry manager to fulfill the win-
dow’s needs. Ifyou need the true width immediately after creating a widget, invoke update to
force the geometry manager to arrange it, or usewinfo reqwidth to get the window’s requested
width instead of its actual width.

winfo x window
Returns a decimal string giving the x-coordinate, inwindow’s parent, of the upper-left corner of
window’s border (orwindowif it has no border).

winfo y window
Returns a decimal string giving the y-coordinate, inwindow’s parent, of the upper-left corner of
window’s border (orwindowif it has no border).

KEYW ORDS
children, class, geometry, height, identifier, information, mapped, parent, path name, screen, terminal,
width, window

Ck 8.0 91

